forked from zqhZY/_rasa_chatbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbot.py
168 lines (136 loc) · 5.41 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: UTF-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import warnings
from rasa_core.actions import Action
from rasa_core.agent import Agent
from rasa_core.channels.console import ConsoleInputChannel
from rasa_core.events import SlotSet
from rasa_core.interpreter import RasaNLUInterpreter
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy
logger = logging.getLogger(__name__)
support_search = ["消费", "流量"]
def extract_item(item):
"""
check if item supported, this func just for lack of train data.
:param item: item in track, eg: "流量"、"查流量"
:return:
"""
if item is None:
return None
for name in support_search:
if name in item:
return name
return None
class ActionSearchConsume(Action):
def name(self):
return 'action_search_consume'
def run(self, dispatcher, tracker, domain):
item = tracker.get_slot("item")
item = extract_item(item)
if item is None:
dispatcher.utter_message("您好,我现在只会查话费和流量")
dispatcher.utter_message("你可以这样问我:“帮我查话费”")
return []
time = tracker.get_slot("time")
if time is None:
dispatcher.utter_message("您想查询哪个月的消费?")
return []
# query database here using item and time as key. but you may normalize time format first.
dispatcher.utter_message("好,请稍等")
if item == "流量":
dispatcher.utter_message("您好,您{}共使用{}二百八十兆,剩余三十兆。".format(time, item))
else:
dispatcher.utter_message("您好,您{}共消费二十八元。".format(time))
return []
'''
class MobilePolicy(KerasPolicy):
def model_architecture(self, num_features, num_actions, max_history_len):
"""Build a Keras model and return a compiled model."""
from keras.layers import LSTM, Activation, Masking, Dense
from keras.models import Sequential
n_hidden = 32 # size of hidden layer in LSTM
# Build Model
batch_shape = (None, max_history_len, num_features)
model = Sequential()
model.add(Masking(-1, batch_input_shape=batch_shape))
model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])
logger.debug(model.summary())
return model
'''
def train_dialogue(domain_file="mobile_domain.yml",
model_path="projects/dialogue",
training_data_file="data/mobile_story.md"):
agent = Agent(domain_file,
policies=[MemoizationPolicy(), KerasPolicy()])
training_data = agent.load_data(training_data_file)
agent.train(
training_data,
epochs=200,
batch_size=16,
augmentation_factor=50,
validation_split=0.2
)
agent.persist(model_path)
return agent
def train_nlu():
from rasa_nlu.converters import load_data
from rasa_nlu.config import RasaNLUConfig
from rasa_nlu.model import Trainer
training_data = load_data("data/mobile_nlu_data.json")
trainer = Trainer(RasaNLUConfig("mobile_nlu_model_config.json"))
trainer.train(training_data)
model_directory = trainer.persist("models/", project_name="ivr", fixed_model_name="demo")
return model_directory
def run_ivrbot_online(input_channel=ConsoleInputChannel(),
interpreter=RasaNLUInterpreter("projects/ivr_nlu/demo"),
domain_file="mobile_domain.yml",
training_data_file="data/mobile_story.md"):
agent = Agent(domain_file,
policies=[MemoizationPolicy(), KerasPolicy()],
interpreter=interpreter)
training_data = agent.load_data(training_data_file)
agent.train_online(training_data,
input_channel=input_channel,
batch_size=16,
epochs=200,
max_training_samples=300)
return agent
def run(serve_forever=True):
agent = Agent.load("projects/dialogue",
interpreter=RasaNLUInterpreter("projects/ivr_nlu/demo"))
if serve_forever:
agent.handle_channel(ConsoleInputChannel())
return agent
if __name__ == "__main__":
logging.basicConfig(level="INFO")
parser = argparse.ArgumentParser(
description="starts the bot")
parser.add_argument(
"task",
choices=["train-nlu", "train-dialogue", "run", "online_train"],
help="what the bot should do - e.g. run or train?")
task = parser.parse_args().task
# decide what to do based on first parameter of the script
if task == "train-nlu":
train_nlu()
elif task == "train-dialogue":
train_dialogue()
elif task == "run":
run()
elif task == "online_train":
run_ivrbot_online()
else:
warnings.warn("Need to pass either 'train-nlu', 'train-dialogue' or "
"'run' to use the script.")
exit(1)