-
-
Notifications
You must be signed in to change notification settings - Fork 65
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/main' into release
- Loading branch information
Showing
46 changed files
with
1,859 additions
and
356 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
#!/usr/bin/env py.test | ||
# -*- coding: utf-8 -*- | ||
|
||
from ufl import FiniteElement, FunctionSpace, MixedFunctionSpace, \ | ||
Coefficient, Matrix, Cofunction, FormSum, Argument, Coargument,\ | ||
TestFunction, TrialFunction, Adjoint, Action, \ | ||
action, adjoint, derivative, tetrahedron, triangle, interval, dx | ||
from ufl.constantvalue import Zero | ||
from ufl.form import ZeroBaseForm | ||
|
||
__authors__ = "India Marsden" | ||
__date__ = "2020-12-28 -- 2020-12-28" | ||
|
||
import pytest | ||
|
||
from ufl.domain import default_domain | ||
from ufl.duals import is_primal, is_dual | ||
from ufl.algorithms.ad import expand_derivatives | ||
|
||
|
||
def test_mixed_functionspace(self): | ||
# Domains | ||
domain_3d = default_domain(tetrahedron) | ||
domain_2d = default_domain(triangle) | ||
domain_1d = default_domain(interval) | ||
# Finite elements | ||
f_1d = FiniteElement("CG", interval, 1) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
f_3d = FiniteElement("CG", tetrahedron, 1) | ||
# Function spaces | ||
V_3d = FunctionSpace(domain_3d, f_3d) | ||
V_2d = FunctionSpace(domain_2d, f_2d) | ||
V_1d = FunctionSpace(domain_1d, f_1d) | ||
|
||
# MixedFunctionSpace = V_3d x V_2d x V_1d | ||
V = MixedFunctionSpace(V_3d, V_2d, V_1d) | ||
# Check sub spaces | ||
assert is_primal(V_3d) | ||
assert is_primal(V_2d) | ||
assert is_primal(V_1d) | ||
assert is_primal(V) | ||
|
||
# Get dual of V_3 | ||
V_dual = V_3d.dual() | ||
|
||
# Test dual functions on MixedFunctionSpace = V_dual x V_2d x V_1d | ||
V = MixedFunctionSpace(V_dual, V_2d, V_1d) | ||
V_mixed_dual = MixedFunctionSpace(V_dual, V_2d.dual(), V_1d.dual()) | ||
|
||
assert is_dual(V_dual) | ||
assert not is_dual(V) | ||
assert is_dual(V_mixed_dual) | ||
|
||
|
||
def test_dual_coefficients(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
V_dual = V.dual() | ||
|
||
v = Coefficient(V, count=1) | ||
u = Coefficient(V_dual, count=1) | ||
w = Cofunction(V_dual) | ||
|
||
assert is_primal(v) | ||
assert not is_dual(v) | ||
|
||
assert is_dual(u) | ||
assert not is_primal(u) | ||
|
||
assert is_dual(w) | ||
assert not is_primal(w) | ||
|
||
with pytest.raises(ValueError): | ||
x = Cofunction(V) | ||
|
||
|
||
def test_dual_arguments(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
V_dual = V.dual() | ||
|
||
v = Argument(V, 1) | ||
u = Argument(V_dual, 2) | ||
w = Coargument(V_dual, 3) | ||
|
||
assert is_primal(v) | ||
assert not is_dual(v) | ||
|
||
assert is_dual(u) | ||
assert not is_primal(u) | ||
|
||
assert is_dual(w) | ||
assert not is_primal(w) | ||
|
||
with pytest.raises(ValueError): | ||
x = Coargument(V, 4) | ||
|
||
|
||
def test_addition(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
f_2d_2 = FiniteElement("CG", triangle, 2) | ||
V2 = FunctionSpace(domain_2d, f_2d_2) | ||
V_dual = V.dual() | ||
|
||
u = TrialFunction(V) | ||
v = TestFunction(V) | ||
|
||
# linear 1-form | ||
L = v * dx | ||
a = Cofunction(V_dual) | ||
res = L + a | ||
assert isinstance(res, FormSum) | ||
assert res | ||
|
||
L = u * v * dx | ||
a = Matrix(V, V) | ||
res = L + a | ||
assert isinstance(res, FormSum) | ||
assert res | ||
|
||
# Check BaseForm._add__ simplification | ||
res += ZeroBaseForm((v, u)) | ||
assert res == a + L | ||
# Check Form._add__ simplification | ||
L += ZeroBaseForm((v,)) | ||
assert L == u * v * dx | ||
# Check BaseForm._add__ simplification | ||
res = ZeroBaseForm((v, u)) | ||
res += a | ||
assert res == a | ||
# Check __neg__ | ||
res = L | ||
res -= ZeroBaseForm((v,)) | ||
assert res == L | ||
|
||
with pytest.raises(ValueError): | ||
# Raise error for incompatible arguments | ||
v2 = TestFunction(V2) | ||
res = L + ZeroBaseForm((v2, u)) | ||
|
||
|
||
def test_scalar_mult(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
V_dual = V.dual() | ||
|
||
# linear 1-form | ||
a = Cofunction(V_dual) | ||
res = 2 * a | ||
assert isinstance(res, FormSum) | ||
assert res | ||
|
||
a = Matrix(V, V) | ||
res = 2 * a | ||
assert isinstance(res, FormSum) | ||
assert res | ||
|
||
|
||
def test_adjoint(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
a = Matrix(V, V) | ||
|
||
adj = adjoint(a) | ||
res = 2 * adj | ||
assert isinstance(res, FormSum) | ||
assert res | ||
|
||
res = adjoint(2 * a) | ||
assert isinstance(res, FormSum) | ||
assert isinstance(res.components()[0], Adjoint) | ||
|
||
# Adjoint(Adjoint(.)) = Id | ||
assert adjoint(adj) == a | ||
|
||
|
||
def test_action(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
domain_1d = default_domain(interval) | ||
f_1d = FiniteElement("CG", interval, 1) | ||
U = FunctionSpace(domain_1d, f_1d) | ||
|
||
a = Matrix(V, U) | ||
b = Matrix(V, U.dual()) | ||
u = Coefficient(U) | ||
u_a = Argument(U, 0) | ||
v = Coefficient(V) | ||
ustar = Cofunction(U.dual()) | ||
u_form = u_a * dx | ||
|
||
res = action(a, u) | ||
assert res | ||
assert len(res.arguments()) < len(a.arguments()) | ||
assert isinstance(res, Action) | ||
|
||
repeat = action(res, v) | ||
assert repeat | ||
assert len(repeat.arguments()) < len(res.arguments()) | ||
|
||
res = action(2 * a, u) | ||
assert isinstance(res, FormSum) | ||
assert isinstance(res.components()[0], Action) | ||
|
||
res = action(b, u_form) | ||
assert res | ||
assert len(res.arguments()) < len(b.arguments()) | ||
|
||
with pytest.raises(TypeError): | ||
res = action(a, v) | ||
|
||
with pytest.raises(TypeError): | ||
res = action(a, ustar) | ||
|
||
b2 = Matrix(V, U.dual()) | ||
ustar2 = Cofunction(U.dual()) | ||
# Check Action left-distributivity with FormSum | ||
res = action(b, ustar + ustar2) | ||
assert res == Action(b, ustar) + Action(b, ustar2) | ||
# Check Action right-distributivity with FormSum | ||
res = action(b + b2, ustar) | ||
assert res == Action(b, ustar) + Action(b2, ustar) | ||
|
||
a2 = Matrix(V, U) | ||
u2 = Coefficient(U) | ||
u3 = Coefficient(U) | ||
# Check Action left-distributivity with Sum | ||
# Add 3 Coefficients to check composition of Sum works fine since u + u2 + u3 => Sum(u, Sum(u2, u3)) | ||
res = action(a, u + u2 + u3) | ||
assert res == Action(a, u3) + Action(a, u) + Action(a, u2) | ||
# Check Action right-distributivity with Sum | ||
res = action(a + a2, u) | ||
assert res == Action(a, u) + Action(a2, u) | ||
|
||
|
||
def test_differentiation(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
domain_1d = default_domain(interval) | ||
f_1d = FiniteElement("CG", interval, 1) | ||
U = FunctionSpace(domain_1d, f_1d) | ||
|
||
u = Coefficient(U) | ||
v = Argument(U, 0) | ||
vstar = Argument(U.dual(), 0) | ||
|
||
# -- Cofunction -- # | ||
w = Cofunction(U.dual()) | ||
dwdu = expand_derivatives(derivative(w, u)) | ||
assert isinstance(dwdu, ZeroBaseForm) | ||
assert dwdu.arguments() == (Argument(u.ufl_function_space(), 0),) | ||
# Check compatibility with int/float | ||
assert dwdu == 0 | ||
|
||
dwdw = expand_derivatives(derivative(w, w, vstar)) | ||
assert dwdw == vstar | ||
|
||
dudw = expand_derivatives(derivative(u, w)) | ||
# du/dw is a ufl.Zero and not a ZeroBaseForm | ||
# as we are not differentiating a BaseForm | ||
assert isinstance(dudw, Zero) | ||
assert dudw == 0 | ||
|
||
# -- Coargument -- # | ||
dvstardu = expand_derivatives(derivative(vstar, u)) | ||
assert isinstance(dvstardu, ZeroBaseForm) | ||
assert dvstardu.arguments() == vstar.arguments() + (Argument(u.ufl_function_space(), 1),) | ||
# Check compatibility with int/float | ||
assert dvstardu == 0 | ||
|
||
# -- Matrix -- # | ||
M = Matrix(V, U) | ||
dMdu = expand_derivatives(derivative(M, u)) | ||
assert isinstance(dMdu, ZeroBaseForm) | ||
assert dMdu.arguments() == M.arguments() + (Argument(u.ufl_function_space(), 2),) | ||
# Check compatibility with int/float | ||
assert dMdu == 0 | ||
|
||
# -- Action -- # | ||
Ac = Action(M, u) | ||
dAcdu = expand_derivatives(derivative(Ac, u)) | ||
|
||
# Action(dM/du, u) + Action(M, du/du) = Action(M, uhat) since dM/du = 0. | ||
# Multiply by 1 to get a FormSum (type compatibility). | ||
assert dAcdu == 1 * Action(M, v) | ||
|
||
# -- Adjoint -- # | ||
Ad = Adjoint(M) | ||
dAddu = expand_derivatives(derivative(Ad, u)) | ||
# Push differentiation through Adjoint | ||
assert dAddu == 0 | ||
|
||
# -- Form sum -- # | ||
Fs = M + Ac | ||
dFsdu = expand_derivatives(derivative(Fs, u)) | ||
# Distribute differentiation over FormSum components | ||
assert dFsdu == 1 * Action(M, v) | ||
|
||
|
||
def test_zero_base_form_mult(): | ||
domain_2d = default_domain(triangle) | ||
f_2d = FiniteElement("CG", triangle, 1) | ||
V = FunctionSpace(domain_2d, f_2d) | ||
v = Argument(V, 0) | ||
Z = ZeroBaseForm((v, v)) | ||
|
||
u = Coefficient(V) | ||
|
||
Zu = Z * u | ||
assert Zu == action(Z, u) | ||
assert action(Zu, u) == ZeroBaseForm(()) |
Oops, something went wrong.