Skip to content

Commit

Permalink
Add AMT
Browse files Browse the repository at this point in the history
  • Loading branch information
Fannovel16 committed Aug 9, 2023
1 parent ecc2acf commit 757f8df
Show file tree
Hide file tree
Showing 15 changed files with 1,712 additions and 15 deletions.
File renamed without changes
File renamed without changes
Binary file added demo_frames/real0.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added demo_frames/real1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
98 changes: 98 additions & 0 deletions models/amt/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import pathlib
import torch
from torch.utils.data import DataLoader
import pathlib
from utils import load_file_from_direct_url
import typing
from .amt_arch import AMT_S, AMT_L, AMT_G, InputPadder

#https://github.com/MCG-NKU/AMT/tree/main/cfgs
MODEL_CONFIGS = {
"amt-s.pth": {
"network": AMT_S,
"params": { "corr_radius": 3, "corr_lvls": 4, "num_flows": 3 }
},
"amt-l.pth": {
"network": AMT_L,
"params": { "corr_radius": 3, "corr_lvls": 4, "num_flows": 5 }
},
"amt-g.pth": {
"network": AMT_G,
"params": { "corr_radius": 3, "corr_lvls": 4, "num_flows": 5 }
},
"gopro_amt-s.pth": {
"network": AMT_S,
"params": { "corr_radius": 3, "corr_lvls": 4, "num_flows": 3 }
}
}



MODEL_TYPE = pathlib.Path(__file__).parent.name

class AMT_VFI:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (MODEL_CONFIGS.keys(), ),
"frames": ("IMAGE", ),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 100}),
"multipler": ("INT", {"default": 2, "min": 1}),
"scale_factor": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100, "step": 0.1}),
},
"optional": {
"optional_interpolation_states": ("INTERPOLATION_STATES", ),
}
}

RETURN_TYPES = ("IMAGES", )
FUNCTION = "vfi"

def vfi(
self,
ckpt_name: typing.AnyStr,
frames: torch.Tensor,
batch_size: typing.SupportsInt = 1,
multipler: typing.SupportsInt = 2,
scale_factor: typing.SupportsFloat = 1.0,
optional_interpolation_states: typing.Optional[list[bool]] = None
):
model_path = load_file_from_direct_url(MODEL_TYPE, f"https://huggingface.co/lalala125/AMT/resolve/main/{ckpt_name}")
model_config = MODEL_CONFIGS[ckpt_name]

global model
model = model_config["network"](**model_config["params"])
model.load_state_dict(torch.load(model_path)["state_dict"])
model.eval().cuda()

frames.cuda()
padder = InputPadder(frames[0].shape, 16)
frames = torch.cat(padder.pad(*[frame.unsqueeze(0) for frame in frames]), dim=0)

frame_dict = {
str(i): frames[i].unsqueeze(0) for i in range(frames.shape[0])
}

if optional_interpolation_states is None:
interpolation_states = [True] * (frames.shape[0] - 1)
else:
interpolation_states = optional_interpolation_states

enabled_former_idxs = [i for i, state in enumerate(interpolation_states) if state]
former_idxs_loader = DataLoader(enabled_former_idxs, batch_size=batch_size)

for former_idxs_batch in former_idxs_loader:
for middle_i in range(1, multipler):
shape = frames[former_idxs_batch].shape
_middle_frames = model(
frames[former_idxs_batch],
frames[former_idxs_batch + 1],
embt=torch.FloatTensor([middle_i / multipler] * shape[0]).view(shape[0], 1, 1, 1).cuda(),
scale_factor=scale_factor,
eval=True
)["imgt_pred"]
for i, former_idx in enumerate(former_idxs_batch):
frame_dict[f'{former_idx}.{middle_i}'] = _middle_frames[i].unsqueeze(0)

return torch.cat([frame_dict[key] for key in sorted(frame_dict.keys())], dim=0)
Loading

0 comments on commit 757f8df

Please sign in to comment.