-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
51 lines (33 loc) · 2.3 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import argparse
def parse_args(mode='train'):
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=42, type=int, help='seed')
parser.add_argument('--device', default='cpu', type=str, help='cpu or gpu')
parser.add_argument('--data_dir', default='/opt/ml/input/data/train_dataset', type=str, help='data directory')
parser.add_argument('--asset_dir', default='asset/', type=str, help='data directory')
parser.add_argument('--file_name', default='train_data.csv', type=str, help='train file name')
parser.add_argument('--model_dir', default='models/', type=str, help='model directory')
parser.add_argument('--model_name', default='model.pt', type=str, help='model file name')
parser.add_argument('--output_dir', default='output/', type=str, help='output directory')
parser.add_argument('--test_file_name', default='test_data.csv', type=str, help='test file name')
parser.add_argument('--max_seq_len', default=20, type=int, help='max sequence length')
parser.add_argument('--num_workers', default=1, type=int, help='number of workers')
# 모델
parser.add_argument('--hidden_dim', default=64, type=int, help='hidden dimension size')
parser.add_argument('--n_layers', default=2, type=int, help='number of layers')
parser.add_argument('--n_heads', default=2, type=int, help='number of heads')
parser.add_argument('--drop_out', default=0.2, type=float, help='drop out rate')
# 훈련
parser.add_argument('--n_epochs', default=20, type=int, help='number of epochs')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--clip_grad', default=10, type=int, help='clip grad')
parser.add_argument('--patience', default=5, type=int, help='for early stopping')
parser.add_argument('--log_steps', default=50, type=int, help='print log per n steps')
### 중요 ###
parser.add_argument('--model', default='lstm', type=str, help='model type')
parser.add_argument('--optimizer', default='adam', type=str, help='optimizer type')
parser.add_argument('--scheduler', default='plateau', type=str, help='scheduler type')
args = parser.parse_args()
return args