Skip to content

FinalCold/Cavnue_Project

Repository files navigation


This repository is based on yolov5. https://github.com/ultralytics/yolov5

Some generated codes are based on convert2Yolo. https://github.com/ssaru/convert2Yolo


Team Cavnue

ChanJong Park (박찬종)

* Email : cjpark137@naver.com

JongWook Bae (배종욱)

* Email : bjonguk@gmail.com

JunYeong Heo (허준영)

* Email : jass9869@naver.com

Video

gitvideo


Pretrained Checkpoints

Model APval APtest AP50 SpeedGPU FPSGPU params GFLOPS
YOLOv5s 37.0 37.0 56.2 2.4ms 416 7.5M 17.5
YOLOv5m 44.3 44.3 63.2 3.4ms 294 21.8M 52.3
YOLOv5l 47.7 47.7 66.5 4.4ms 227 47.8M 117.2
YOLOv5x 49.2 49.2 67.7 6.9ms 145 89.0M 221.5
YOLOv5x + TTA 50.8 50.8 68.9 25.5ms 39 89.0M 801.0

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Preparing Dataset

You can generate VOC format(.xml) to Yolo format(.txt) with command below before you train your dataset.

$ python generate_dataset.py --img_path /path/dir --label /path/dir --volume 5

Then, you can get (Dataset * 1/5) amount of dataset including images and labels. and it automatically split into train : val = 9 : 1

Training

Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data nia.yaml --weights yolov5m.pt --batch-size 32 --img 640

Inference

To run inference on example images in data/images:

$ python inference.py --source data/images --weights best.pt --save-xml

Development Languages

* Python
* Cuda

Development Environment

Ubuntu 18.04 LTS
OpenCV 4.4.0
Cuda 10.1
CuDNN 7.6.5
Python 3.8
PyTorch 1.7.1

GPU

Nvidia Geforce Titan X 12Gb * 2

Libraries

Yolo v5
Python
OpenCV

poster

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published