-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_powermodels.py
366 lines (305 loc) · 14.8 KB
/
run_powermodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import copy
import getopt
import os
import sys
from time import time
import numpy as np
import pandas as pd
from tqdm import tqdm
import pandapower as pp
from pandapower.converter import init_ne_line
from pandapower.converter.powermodels.from_pm import read_ots_results
pm_time_limits = {
"pm_time_limit": 300.,
"pm_nl_time_limit": 150.,
"pm_mip_time_limit": 150.,
}
def check_opf_converged(net):
return True if net["OPF_converged"] else False
def init_repl(net):
max_idx = max(net["line"].index)
net["line"] = pd.concat([net["line"]] * 2, ignore_index=True)
net["line"].loc[max_idx + 1:, "in_service"] = False
new_lines = net["line"].loc[max_idx + 1:]
construction_cost = new_lines.length_km.values
init_ne_line(net, new_lines.index, construction_costs=construction_cost)
return net
def set_p_va(net, pm_model):
results_available = False
init_p_mw = copy.deepcopy(net.gen.loc[:, "p_mw"])
init_va = copy.deepcopy(net.ext_grid.loc[:, "va_degree"].values)
if len(net.res_bus):
net.gen.loc[:, "p_mw"] = net.res_gen.loc[:, "p_mw"]
if net.name != "simbench_mixed" and pm_model != "SOCWRPowerModel":
net.ext_grid.loc[:, "va_degree"] = net.res_bus.loc[net.ext_grid.bus, "va_degree"].values
results_available = True
return results_available, init_p_mw, init_va
def reset_va_p(net, init_p_mw, init_va):
net.gen.loc[:, "p_mw"] = init_p_mw
net.ext_grid.loc[:, "va_degree"] = init_va
def assert_tnep_result(net, pm_model):
n_built = sum(net["res_ne_line"].values)
# set lines to be built in service
lines_to_built = net["res_ne_line"].loc[net["res_ne_line"].loc[:, "built"], "built"].index
net["line"].loc[lines_to_built, "in_service"] = True
cost = net["line"].loc[lines_to_built, "length_km"].sum()
# set changed generator setpoint
results_available, init_p_mw, init_va = set_p_va(net, pm_model)
# run a power flow calculation again and check if max_loading percent is still violated
pp.rundcpp(net)
max_line_loading_dc = max(net["res_line"].loc[:, "loading_percent"])
pp.runpp(net)
# check max line loading results
worked = not np.any(net["res_line"].loc[:, "loading_percent"] > net["line"].loc[:, "max_loading_percent"])
max_line_loading = max(net["res_line"].loc[:, "loading_percent"])
v_min = net["res_bus"].loc[:, "vm_pu"].min()
v_max = net["res_bus"].loc[:, "vm_pu"].max()
# reset
net["line"].loc[lines_to_built, "in_service"] = False
if results_available:
reset_va_p(net, init_p_mw, init_va)
return worked, max_line_loading, max_line_loading_dc, v_min, v_max, n_built, list(lines_to_built), cost
def assert_ots_result(net, pm_model):
backup_in_service_l = copy.deepcopy(net.line.loc[:, "in_service"].values)
backup_in_service_t = copy.deepcopy(net.trafo.loc[:, "in_service"].values)
closed_l = net["res_line"].loc[:, "in_service"].values.astype(bool)
closed_t = net["res_trafo"].loc[:, "in_service"].values.astype(bool)
lines_is = list(net["res_line"].loc[closed_l, "in_service"].index) + list(
net["res_trafo"].loc[closed_t, "in_service"].index)
n_closed = closed_l.sum() + closed_t.sum()
# set closed switches
net["line"].loc[closed_l, "in_service"] = True
net["line"].loc[~closed_l, "in_service"] = False
net["trafo"].loc[closed_t, "in_service"] = True
net["trafo"].loc[~closed_t, "in_service"] = False
# set changed generator setpoint
results_available, init_p_mw, init_va = set_p_va(net, pm_model)
pp.rundcpp(net)
max_line_loading_dc = max(net["res_line"].loc[:, "loading_percent"])
pp.runpp(net)
# check max line loading results and if all buses are still in service
worked = not np.any(net["res_line"].loc[:, "loading_percent"] > net["line"].loc[:, "max_loading_percent"])
worked = worked and (len(net.bus) == len(net.res_bus.dropna()))
max_line_loading = max(net["res_line"].loc[:, "loading_percent"])
v_min = net["res_bus"].loc[:, "vm_pu"].min()
v_max = net["res_bus"].loc[:, "vm_pu"].max()
# reset
if results_available:
reset_va_p(net, init_p_mw, init_va)
net["line"].loc[:, "in_service"] = backup_in_service_l
net["trafo"].loc[:, "in_service"] = backup_in_service_t
return worked, max_line_loading, max_line_loading_dc, v_min, v_max, n_closed, lines_is
def drop_als(net):
if "additional_line" in net.line.columns:
# drop additional lines
net["line"] = net["line"].drop(index=net.line.loc[net.line.additional_line.values].index)
return net
def init_tnep(net):
new_lines = net.line.loc[net.line.loc[:, "additional_line"]]
construction_cost = new_lines.length_km.values
init_ne_line(net, new_lines.index, construction_costs=construction_cost)
return net
def custom_ots(net, pm_model, pm_solver, with_ratea=True):
julia_file = "ots_with_ratea.jl"
with_ratea = False if pm_model == "ACPPowerModel" else True
if pm_solver == "knitro":
if with_ratea:
pp.runpm(net, julia_file=julia_file, pm_model=pm_model, pm_solver="knitro", pm_time_limits=pm_time_limits,
pm_log_level=1)
read_ots_results(net)
else:
pp.runpm_ots(net, pm_model=pm_model, pm_solver="knitro", pm_time_limits=pm_time_limits, pm_log_level=1)
elif pm_solver == "cbc":
if with_ratea:
pp.runpm(net, julia_file=julia_file, pm_model=pm_model, pm_solver="cbc", pm_time_limits=pm_time_limits,
pm_log_level=1)
read_ots_results(net)
else:
pp.runpm_ots(net, pm_model=pm_model, pm_solver="cbc", pm_time_limits=pm_time_limits, pm_log_level=1)
elif pm_solver == "gurobi":
if with_ratea:
pp.runpm(net, julia_file=julia_file, pm_model=pm_model, pm_solver="juniper", pm_nl_solver="gurobi",
pm_time_limits=pm_time_limits, pm_log_level=1)
read_ots_results(net)
else:
pp.runpm_ots(net, pm_model=pm_model, pm_solver="juniper", pm_nl_solver="gurobi",
pm_time_limits=pm_time_limits, pm_log_level=1)
else:
if with_ratea:
pp.runpm(net, julia_file=julia_file, pm_model=pm_model, pm_solver="juniper", pm_nl_solver="ipopt",
pm_time_limits=pm_time_limits, pm_log_level=1)
read_ots_results(net)
else:
pp.runpm_ots(net, pm_model=pm_model, pm_solver="juniper", pm_nl_solver="ipopt",
pm_time_limits=pm_time_limits, pm_log_level=1)
def load_from_disk(net_path, pm_model):
ots = pp.from_json(net_path)
repl = pp.from_json(net_path)
tnep = pp.from_json(net_path)
repl = drop_als(repl)
ots = drop_als(ots)
tnep = init_tnep(tnep)
repl = init_repl(repl)
return repl, tnep, ots
def restore_df(lc_path, net):
# restores dataframe from files on disk
df_names = os.listdir(lc_path)
for file in df_names:
element = file.replace(".json", "")
file_path = os.path.join(lc_path, file)
net[element] = pd.read_json(file_path)
return net
def test_power_models(loadcases_path, net_path, grid, pm_model="DCPPowerModel", pm_solver="gurobi", kind="tnep,repl",
lc="scaled"):
repl, tnep, ots = load_from_disk(net_path, pm_model)
res_file = os.path.join(get_res_dir(pm_model, pm_solver, init=lc), grid + ".xlsx")
# get loadcases
loadcases = os.listdir(loadcases_path)
df = pd.DataFrame(index=np.arange(len(loadcases)), columns=["lc", "ll_init", "vmin_init", "vmax_init",
"tnep_converged", "tnep_worked", "tnep_max_ll",
"tnep_max_ll_dc", "tnep_vmax", "tnep_vmin",
"tnep_built", "tnep_solution", "tnep_cost", "tnep_t",
"repl_converged", "repl_worked", "repl_max_ll",
"repl_max_ll_dc", "repl_vmax", "repl_vmin",
"repl_built", "repl_solution", "repl_cost", "repl_t",
"ots_converged", "ots_worked", "ots_max_ll",
"ots_max_ll_dc", "ots_vmax",
"ots_vmin", "ots_closed", "ots_solution", "ots_t"])
for i, lc in tqdm(enumerate(loadcases), desc="getting limits for loadcases"):
# get initial values prior to any optimization
df.at[i, "lc"] = lc
lc_path = os.path.join(loadcases_path, lc)
repl = restore_df(lc_path, repl)
try:
pp.runpp(repl)
df.at[i, "ll_init"] = repl.res_line.loading_percent.max()
df.at[i, "vmin_init"] = repl.res_bus.vm_pu.min()
df.at[i, "vmax_init"] = repl.res_bus.vm_pu.max()
except pp.LoadflowNotConverged:
pass
df.to_excel(res_file)
repl, tnep, ots = load_from_disk(net_path, pm_model)
# backup init nets
repl_c, tnep_c, ots_c = copy.deepcopy(repl), copy.deepcopy(tnep), copy.deepcopy(ots)
for i, lc in tqdm(enumerate(loadcases), desc="testing powermodels"):
# run the optimization
lc_path = os.path.join(loadcases_path, lc)
repl = restore_df(lc_path, repl)
tnep = restore_df(lc_path, tnep)
ots = restore_df(lc_path, ots)
if "repl" in kind:
try:
t0 = time()
# change this part if you like to run your own optimization
pp.runpm_tnep(repl, pm_model=pm_model, pm_solver=pm_solver, pm_time_limits=pm_time_limits,
pm_log_level=1)
df.at[i, "repl_t"] = time() - t0
except Exception as e:
repl = copy.deepcopy(repl_c)
print(e)
df.at[i, "repl_converged"] = check_opf_converged(repl)
try:
df.loc[i, ["repl_worked", "repl_max_ll", "repl_max_ll_dc", "repl_vmin", "repl_vmax",
"repl_built", "repl_solution", "repl_cost"]] = assert_tnep_result(
repl, pm_model)
except Exception as e:
print(e)
repl = copy.deepcopy(repl_c)
df.to_excel(res_file)
if "tnep" in kind:
try:
t0 = time()
# change this part if you like to run your own optimization
pp.runpm_tnep(tnep, pm_model=pm_model, pm_solver=pm_solver, pm_time_limits=pm_time_limits,
pm_log_level=1)
df.at[i, "tnep_t"] = time() - t0
except Exception as e:
print(e)
tnep = copy.deepcopy(tnep_c)
df.at[i, "tnep_converged"] = check_opf_converged(tnep)
try:
df.loc[i, ["tnep_worked", "tnep_max_ll", "tnep_max_ll_dc", "tnep_vmin", "tnep_vmax",
"tnep_built", "tnep_solution", "tnep_cost"]] = assert_tnep_result(
tnep, pm_model)
except Exception as e:
tnep = copy.deepcopy(tnep_c)
print(e)
df.to_excel(res_file)
if "ots" in kind:
try:
t0 = time()
# change this part if you like to run your own optimization
custom_ots(ots, pm_model=pm_model, pm_solver=pm_solver)
df.at[i, "ots_t"] = time() - t0
except Exception as e:
ots = copy.deepcopy(ots_c)
print(e)
try:
df.at[i, "ots_converged"] = check_opf_converged(ots)
df.loc[i, ["ots_worked", "ots_max_ll", "ots_max_ll_dc", "ots_vmin", "ots_vmax",
"ots_closed", "ots_solution"]] = assert_ots_result(ots, pm_model)
except Exception as e:
print(e)
ots = copy.deepcopy(ots_c)
df.to_excel(res_file)
print(f"Optimization finished. Results are stored to {res_file}")
return df
def get_res_dir(pm_model, pm_solver, init):
return os.path.join(os.getcwd(), "results", init, pm_model + "_" + pm_solver)
def get_grids(grid_name=None):
if grid_name is None:
grids = ["brigande", "simbench_mixed", "simbench_urban", "rts"]
else:
grids = [grid_name]
return grids
def start_power_models(pm_model, pm_solver, grid_name=None, kind="tnep,repl", lc="scaled"):
# runs the optimization and stores results to excel files
# see details for options in get_command_line_args
lc_type = "scaled_loadcases" if lc == "scaled" else "time_series_loadcases"
start_path = os.path.join(os.getcwd(), lc_type)
os.makedirs(get_res_dir(pm_model, pm_solver, init=lc), exist_ok=True)
grids = get_grids(grid_name)
for grid in grids:
net_path = os.path.join(start_path, grid + ".json")
loadcases_path = os.path.join(start_path, grid)
print(f"Calculating optimization results for '{grid}' with optimizations '{kind}'")
print(f"Model: '{pm_model}', Solver: '{pm_solver}'")
df = test_power_models(loadcases_path, net_path, grid, pm_model, pm_solver, kind=kind, lc=lc)
def get_command_line_args(argv):
"""
Gets the command line arguments which are:
Returns
-------
pm_model (str) - The PowerModels.jl power model e.g. "DCPPowerModel"
pm_solver (str) - The solver to use, e.g. "juniper", "gurobi"
grid_name (str) - optional if you only want to calculate one grid, e.g. "rts"
lc (str) - the loadcases to calculate. Either "ts" or "scaled"
kind (str) - the optimizations to run, e.g. "tnep,ots,repl". Can only be a part of these like "tnep,repl"
"""
pm_model, pm_solver, grid_name = None, None, None
kind = "tnep,repl,ots"
lc = "scaled"
try:
opts, args = getopt.getopt(argv, ":m:s:g:k:",
["model=", "solver=", "grid=", "kind="])
except getopt.GetoptError:
raise getopt.GetoptError("error reading input")
for opt, arg in opts:
if opt in ("-m", "--model"):
pm_model = arg
if opt in ("-s", "--solver"):
pm_solver = arg
if opt in ("-g", "--grid"):
grid_name = arg
if opt in ("-k", "--kind"):
kind = arg
if pm_solver is None:
UserWarning("pm_solver is None. You must specify a solver with '--solver='")
if pm_model is None:
UserWarning("pm_model is None. You must specify a model with '--model='")
return pm_model, pm_solver, grid_name, lc, kind
if __name__ == "__main__":
# read command line args
pm_model, pm_solver, grid_name, lc, kind = get_command_line_args(sys.argv[1:])
# run opt
start_power_models(pm_model, pm_solver, grid_name, kind=kind, lc=lc)