-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
599 lines (525 loc) · 29.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import gc
import glob
import math
import os
import shutil
import subprocess
import sys
import time
import warnings
from collections import deque
from contextlib import nullcontext
from functools import partial
from typing import List, Optional, Tuple
import GPUtil
import colorama
import numpy as np
import torch
from torch.autograd.profiler import record_function
from torch.utils.data import DataLoader
import dist
from utils import arg_util, misc
from utils.data import build_dataset, pil_load
from utils.data_sampler import DistInfiniteBatchSampler
def create_tb_lg(args: arg_util.Args):
tb_lg: misc.TensorboardLogger
with_tb_lg = dist.is_master()
if with_tb_lg:
os.makedirs(args.tb_log_dir_path, exist_ok=True)
# noinspection PyTypeChecker
tb_lg = misc.DistLogger(misc.TensorboardLogger(log_dir=args.tb_log_dir_online, filename_suffix=f'_{misc.time_str("%m%d_%H%M")}'))
tb_lg.flush()
else:
# noinspection PyTypeChecker
tb_lg = misc.DistLogger(None)
dist.barrier()
return tb_lg
def maybe_auto_resume(args: arg_util.Args, pattern='ckpt*.pth') -> Tuple[List[str], int, int, str, List[Tuple[float, float]], dict, dict]:
info = []
resume = None
if len(args.resume):
resume = args.resume
info.append(f'[auto_resume] load from args.resume @ {resume} ...')
elif not args.local_debug:
all_ckpt = lyoko.glob_with_latest_modified_first(os.path.join(args.bed, pattern))
if len(all_ckpt) == 0:
resume = resume
info.append(f'[auto_resume] no ckpt found @ {pattern}')
info.append(f'[auto_resume quit]')
else:
resume = all_ckpt[0]
info.append(f'[auto_resume] auto load from @ {resume} ...')
info.append(f'[auto_resume quit]')
else:
info.append(f'[auto_resume] disabled')
info.append(f'[auto_resume quit]')
if resume is None:
return info, 0, 0, '[no acc str]', [], {}, {}
try:
ckpt = torch.load(resume, map_location='cpu')
except Exception as e:
info.append(f'[auto_resume] failed, {e} @ {resume}')
return info, 0, 0, '[no acc str]', [], {}, {}
dist.barrier()
ep, it = (ckpt['epoch'], ckpt['iter']) if 'iter' in ckpt else (ckpt['epoch'] + 1, 0)
eval_milestone = ckpt.get('milestones', [])
info.append(f'[auto_resume success] resume from ep{ep}, it{it}, eval_milestone: {eval_milestone}')
return info, ep, it, ckpt.get('acc_str', '[no acc str]'), eval_milestone, ckpt['trainer'], ckpt['args']
def build_things_from_args(args: arg_util.Args):
# set seed
auto_resume_info, start_ep, start_it, acc_str, eval_milestone, trainer_state, args_state = maybe_auto_resume(args, 'ckpt*.pth')
args.load_state_dict_vae_only(args_state)
args.diffs = ' '.join([f'{d:.3f}'[2:] for d in eval_milestone]) # args updated
tb_lg = create_tb_lg(args)
print(f'global bs={args.bs}, local bs={args.lbs}')
print(f'initial args:\n{str(args)}')
if start_ep == args.ep:
print(f'[vlip] Training finished ({acc_str}), skipping ...\n\n')
return args, tb_lg
# build data
# swin: -1~1, resize to (reso, reso) by LANCZOS
# xl: -1~1,t
if not args.local_debug:
print(f'[build PT data] ...\n')
dataset_train, val_transform = build_dataset(datasets_str=args.data, subset_ratio=args.subset, final_reso=args.img_size, mid_reso=args.mid_reso, hflip=args.hflip)
ld_train = DataLoader(
dataset=dataset_train, num_workers=args.workers, pin_memory=True,
generator=args.get_different_generator_for_each_rank(), # worker_init_fn=worker_init_fn,
batch_sampler=DistInfiniteBatchSampler(
dataset_len=len(dataset_train), glb_batch_size=args.bs, same_seed_for_all_ranks=args.same_seed_for_all_ranks,
shuffle=True, fill_last=True, rank=dist.get_rank(), world_size=dist.get_world_size(), start_ep=start_ep, start_it=start_it,
),
)
del dataset_train
[print(l) for l in auto_resume_info]
print(f'[dataloader multi processing] ...', end='', flush=True)
stt = time.time()
iters_train = len(ld_train) # 479 # len(ld_train)
ld_train = iter(ld_train) # iter(range(20000000))
# noinspection PyArgumentList
print(f' [dataloader multi processing](*) finished! ({time.time()-stt:.2f}s)', flush=True, clean=True)
print(f'[dataloader] gbs={args.bs}, lbs={args.lbs}, iters_train={iters_train}')
else:
# dataset_mean, dataset_std = (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
iters_train = ld_train = None
from torchvision.transforms import transforms, InterpolationMode
from utils.data import normalize_01_into_pm1
val_transform = transforms.Compose([
transforms.Resize(round(args.img_size*1.3), interpolation=InterpolationMode.LANCZOS), # shorter edge would be the size
transforms.CenterCrop((args.img_size, args.img_size)),
transforms.ToTensor(),
# transforms.Normalize(mean, std, inplace=True),
normalize_01_into_pm1
])
[print(l) for l in auto_resume_info]
# import heavy packages after Dataloader object creation
from torch.nn.parallel import DistributedDataParallel as DDP
from models import build_vae_disc, VQVAE, DinoDisc
from trainer import VAETrainer
from utils.amp_opt import AmpOptimizer
from utils.lpips import LPIPS
from utils.lr_control import filter_params
from utils import optimizer
# build models
vae_wo_ddp, disc_wo_ddp = build_vae_disc(args)
vae_wo_ddp: VQVAE
disc_wo_ddp: DinoDisc
print(f'[PT] VAE model ({args.vae}) = {vae_wo_ddp}\n')
if isinstance(disc_wo_ddp, DinoDisc):
print(f'[PT] Disc model (frozen part) = {disc_wo_ddp.dino_proxy[0]}\n')
print(f'[PT] Disc model (trainable part) = {disc_wo_ddp}\n\n')
assert all(p.requires_grad for p in vae_wo_ddp.parameters())
assert all(p.requires_grad for p in disc_wo_ddp.parameters())
count_p = lambda m: f'{sum(p.numel() for p in m.parameters())/1e6:.2f}'
print(f'[PT][#para] ' + ', '.join([f'{k}={count_p(m)}' for k, m in (
('VAE', vae_wo_ddp), ('VAE.enc', vae_wo_ddp.encoder), ('VAE.dec', vae_wo_ddp.decoder), ('VAE.quant', vae_wo_ddp.quantize)
)]))
print(f'[PT][#para] ' + ', '.join([f'{k}={count_p(m)}' for k, m in (
('Disc', disc_wo_ddp),
# ('from_wave', disc_wo_ddp.ls_from_wavelet12c), ('resi', disc_wo_ddp.ls_resi),
# ('fpn_conv', disc_wo_ddp.ls_fpn_conv), ('head', disc_wo_ddp.ls_head), ('down', disc_wo_ddp.ls_down),
# ('glb_cls', disc_wo_ddp.glb_cls),
)]) + '\n\n')
# build optimizers
optimizers: List[AmpOptimizer] = []
for model_name, model_wo_ddp, opt_beta, lr, wd, clip in (('vae', vae_wo_ddp, args.vae_opt_beta, args.vae_lr, args.vae_wd, args.grad_clip), ('dis', disc_wo_ddp, args.disc_opt_beta, args.disc_lr, args.disc_wd, args.grad_clip)):
if args.local_debug:
lr, wd, clip = 5e-5, 5e-4, 20
# sync model parameters
for p in model_wo_ddp.parameters():
if p.requires_grad:
dist.broadcast(p.data, src_rank=0)
ndim_dict = {name: para.ndim for name, para in model_wo_ddp.named_parameters() if para.requires_grad}
# build optimizer
nowd_keys = {
'cls_token', 'start_token', 'task_token', 'cfg_uncond',
'pos_embed', 'pos_1LC', 'pos_start', 'start_pos', 'lvl_embed',
'gamma', 'beta',
'ada_gss', 'moe_bias',
'class_emb', 'embedding',
'norm_scale',
}
names, paras, para_groups = filter_params(model_wo_ddp, ndim_dict, nowd_keys=nowd_keys)
beta1, beta2 = map(float, opt_beta.split('_'))
opt_clz = {
'adam': partial(torch.optim.AdamW, betas=(beta1, beta2), fused=args.fuse_opt),
'adamw': partial(torch.optim.AdamW, betas=(beta1, beta2), fused=args.fuse_opt),
'lamb': partial(optimizer.LAMBtimm, betas=(beta1, beta2), max_grad_norm=clip), # eps=1e-7
'lion': partial(optimizer.Lion, betas=(beta1, beta2), max_grad_norm=clip), # eps=1e-7
}[args.opt]
opt_kw = dict(lr=lr, weight_decay=0)
if args.oeps: opt_kw['eps'] = args.oeps
print(f'[vlip] optim={opt_clz}, opt_kw={opt_kw}\n')
optimizers.append(AmpOptimizer(model_name, model_maybe_fsdp=None, fp16=args.fp16, bf16=args.bf16, zero=args.zero, optimizer=opt_clz(params=para_groups, **opt_kw), grad_clip=clip, n_gradient_accumulation=args.grad_accu))
del names, paras, para_groups
vae_optim, disc_optim = optimizers[0], optimizers[1]
vae_wo_ddp, disc_wo_ddp = args.compile_model(vae_wo_ddp, args.compile_vae), args.compile_model(disc_wo_ddp, args.compile_disc)
lpips_loss: LPIPS = args.compile_model(LPIPS(args.lpips_path).to(args.device), fast=args.compile_lpips)
# distributed wrapper
ddp_class = DDP if dist.initialized() else NullDDP
vae: DDP = ddp_class(vae_wo_ddp, device_ids=[dist.get_local_rank()], find_unused_parameters=False, static_graph=args.ddp_static, broadcast_buffers=False)
disc: DDP = ddp_class(disc_wo_ddp, device_ids=[dist.get_local_rank()], find_unused_parameters=False, static_graph=args.ddp_static, broadcast_buffers=False)
vae_optim.model_maybe_fsdp = vae if args.zero else vae_wo_ddp
disc_optim.model_maybe_fsdp = disc if args.zero else disc_wo_ddp
trainer = VAETrainer(
is_visualizer=dist.is_master(),
vae=vae, vae_wo_ddp=vae_wo_ddp, disc=disc, disc_wo_ddp=disc_wo_ddp, ema_ratio=args.ema,
dcrit=args.dcrit, vae_opt=vae_optim, disc_opt=disc_optim,
daug=args.disc_aug_prob, lpips_loss=lpips_loss, lp_reso=args.lpr, wei_l1=args.l1, wei_l2=args.l2, wei_entropy=args.le, wei_lpips=args.lp, wei_disc=args.ld, adapt_type=args.gada, bcr=args.bcr, bcr_cut=args.bcr_cut, reg=args.reg, reg_every=args.reg_every,
disc_grad_ckpt=args.disc_grad_ckpt,
dbg_unused=args.dbg_unused, dbg_nan=args.dbg_nan
)
if trainer_state is not None and len(trainer_state):
trainer.load_state_dict(trainer_state, strict=False)
del vae, vae_wo_ddp, disc, disc_wo_ddp, vae_optim, disc_optim
func = lambda x: os.path.basename(x) not in {'v3_008d0681123bcdf1.jpg', 'v4_00938fc5a0223cf4.jpg', 'v6_013afe5493a1a41c.jpg'}
val_imgs = list(filter(func, sorted(glob.glob(args.val_img_pattern))))
if args.local_debug:
inp = []
for im in val_imgs:
im = pil_load(im, args.img_size * 2)
inp.append(val_transform(im))
inp = torch.stack(inp, dim=0).to(args.device, non_blocking=True)
print(f'[{inp.shape=}]')
me = misc.MetricLogger(delimiter=' ')
dbg_it = 599
me.log_iters = {0, dbg_it}
print(f'{trainer.vae_wo_ddp.encoder.conv_in.weight.data.view(-1)[:4]=}')
args.seed_everything()
trainer.train_step(
ep=0, it=0, g_it=0, stepping=True, regularizing=False, metric_lg=me, logging_params=True, tb_lg=tb_lg,
inp=inp,
warmup_disc_schedule=0.0, fade_blur_schedule=0.8,
maybe_record_function=nullcontext,
args=args
)
trainer.train_step(
ep=1, it=dbg_it, g_it=dbg_it, stepping=True, regularizing=True, metric_lg=me, logging_params=True, tb_lg=tb_lg,
inp=inp,
warmup_disc_schedule=0.8, fade_blur_schedule=0.0,
maybe_record_function=nullcontext,
args=args
)
print({k: meter.global_avg for k, meter in me.meters.items()})
if isinstance(sys.stdout, dist.BackupStreamToFile) and isinstance(sys.stderr, dist.BackupStreamToFile):
sys.stdout.close(), sys.stderr.close()
exit(0)
vis_dir, vis_file = '_vis_cached', f'{"vae_oi1in" if is_old_exp else "vae_mine"}_8x{args.img_size}.pth'
vis_path = os.path.join(vis_dir, vis_file)
print(f'[dld {vis_file}] before dld')
if not os.path.exists(vis_path):
if dist.is_local_master():
misc.os_system(f'mkdir -p {vis_dir}; cp {lyoko.BNAS_DATA}/ckpt_vgpt/{vis_file} {vis_dir}/ >/dev/null 2>&1')
dist.barrier()
print(f'[dld {vis_file}] before load')
if os.path.exists(vis_path):
inp, label = torch.load(vis_path, map_location='cpu')
inp, label = inp.to(args.device, non_blocking=True), label.to(args.device, non_blocking=True)
print(f'[dld {vis_file}] {vis_path} successfully loaded.', flush=True)
else:
print(f'[dld {vis_file}] {vis_path} not found, now create and upload.', flush=True)
inp, label = [], []
for im in val_imgs:
im = pil_load(im, args.img_size * 2)
inp.append(val_transform(im))
label.append(0)
inp, label = torch.stack(inp, dim=0).to(args.device, non_blocking=True), torch.tensor(label, dtype=torch.long).to(args.device, non_blocking=True)
if dist.is_master():
torch.save([inp, label], vis_path)
misc.os_system(f'mkdir -p {lyoko.BNAS_DATA}/ckpt_vgpt; cp {vis_path} {lyoko.BNAS_DATA}/ckpt_vgpt/ >/dev/null 2>&1')
dist.barrier()
del inp, label, val_transform
return (
tb_lg, trainer,
start_ep, start_it, acc_str, eval_milestone, iters_train, ld_train,
)
g_speed_ls = deque(maxlen=128)
def train_one_ep(ep: int, is_first_ep: bool, start_it: int, saver: CKPTSaver, args: arg_util.Args, tb_lg: misc.TensorboardLogger, ld_or_itrt, iters_train: int, trainer, logging_params_milestone):
# import heavy packages after Dataloader object creation
from trainer import VAETrainer
from utils.lr_control import lr_wd_annealing
trainer: VAETrainer
step_cnt = 0
me = misc.MetricLogger(delimiter=' ')
[me.add_meter(x, misc.SmoothedValue(window_size=1, fmt='{value:.2g}')) for x in ['glr', 'dlr']]
[me.add_meter(x, misc.SmoothedValue(window_size=1, fmt='{median:.2f} ({global_avg:.2f})')) for x in ['gnm', 'dnm']]
for l in ['L1', 'NLL', 'Ld', 'Wg']:
me.add_meter(l, misc.SmoothedValue(fmt='{median:.3f} ({global_avg:.3f})'))
header = f'[Ep]: [{ep:4d}/{args.ep}]'
touching_secs = 120
if is_first_ep:
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
g_it, wp_it, max_it = ep * iters_train, args.warmup_ep * iters_train, args.ep * iters_train
disc_start = args.disc_start_ep * iters_train
disc_wp_it, disc_max_it = args.disc_warmup_ep * iters_train, max_it - disc_start
doing_profiling = args.prof and is_first_ep and (args.profall or dist.is_master())
maybe_record_function = record_function if doing_profiling else nullcontext
trainer.vae_wo_ddp.maybe_record_function = maybe_record_function
if args.zero:
pref = 'hybrid' if args.hsdp else 'fsdp'
if args.buck in {'0', '0.0', '0e0', '0.0e0'}:
parallel = f'ep{ep}_{pref}{args.zero}_module_orig{args.fsdp_orig:d}'
else:
parallel = f'ep{ep}_{pref}{args.zero}_buk{args.buck}_orig{args.fsdp_orig:d}'
else:
parallel = 'ddp'
if os.getenv('NCCL_CROSS_NIC', '0') == '1':
parallel += f'_NIC1'
profiling_name = f'{args.vae}_bs{args.bs}_{parallel}_gradckpt{args.vae_grad_ckpt:d}__GPU{dist.get_rank_str_zfill()}of{dist.get_world_size()}'
profiler = None
if doing_profiling:
profiler = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(
wait=40,
warmup=3,
active=2,
repeat=1,
),
record_shapes=True,
profile_memory=True,
with_stack=True,
on_trace_ready=TraceHandler('./', f'{profiling_name}.pt.trace.json', args.tos_profiler_file_prefix, args.bed)
)
profiler.start()
last_t_perf = time.perf_counter()
speed_ls: deque = g_speed_ls
FREQ = min(50, iters_train//2-1)
NVIDIA_IT_PLUS_1 = set(FREQ*i for i in (1, 2, 3, 4, 6, 8))
PRINTABLE_IT_PLUS_1 = set(FREQ*i for i in (1, 2, 3, 4, 6, 8, 12, 16, 24, 32))
for it, inp in me.log_every(start_it, iters_train, ld_or_itrt, max(10, iters_train // 1000), header):
if (it+1) % FREQ == 0:
speed_ls.append((time.perf_counter()-last_t_perf)/FREQ)
iter_speed = float(np.median(speed_ls))
img_per_sec = args.bs / iter_speed
img_per_day = img_per_sec * 3600 * 24 / 1e6
args.iter_speed, args.img_per_day = iter_speed, img_per_day
if (it+1) in NVIDIA_IT_PLUS_1: args.max_nvidia_smi = max(args.max_nvidia_smi, max(gpu.memoryUsed for gpu in GPUtil.getGPUs()) / 1024)
mem_infos_dict = torch.cuda.memory_stats()
memory_allocated = round(mem_infos_dict['allocated_bytes.all.current']/1024**3, 2)
memory_reserved = round(mem_infos_dict['reserved_bytes.all.current']/1024**3, 2)
args.max_memory_allocated = round(mem_infos_dict['allocated_bytes.all.peak']/1024**3, 2)
args.max_memory_reserved = round(mem_infos_dict['reserved_bytes.all.peak']/1024**3, 2)
args.num_alloc_retries = mem_infos_dict['num_alloc_retries']
if (ep <= 1 or ep == math.floor(args.disc_start_ep + 1e-4)) and (it+1) in PRINTABLE_IT_PLUS_1:
tails = list(speed_ls)[-10:]
print(
colorama.Fore.LIGHTCYAN_EX +
f"[profiling] "
f"speed: {iter_speed:.3f} ({min(tails):.3f}~{max(tails):.2f}) sec/iter | "
f"{img_per_sec:.1f} imgs/sec | "
f"{img_per_day:.2f}M imgs/day | "
f"{img_per_day*(args.img_size//trainer.vae_wo_ddp.downsample_ratio)**2/1e3:.2f}B token/day || "
f"Peak nvidia-smi: {args.max_nvidia_smi:.2f} GB || "
f"PyTorch mem - "
f"alloc: {memory_allocated:.2f} | "
f"max_alloc: {args.max_memory_allocated:.2f} | "
f"reserved: {memory_reserved:.2f} | "
f"max_reserved: {args.max_memory_reserved:.2f} | "
f"num_alloc_retries: {args.num_alloc_retries}" + colorama.Fore.RESET + colorama.Back.RESET + colorama.Style.RESET_ALL,
flush=True
)
last_t_perf = time.perf_counter()
if it < start_it: continue
if is_first_ep and it == start_it: warnings.resetwarnings()
if doing_profiling: profiler.step()
with maybe_record_function('before_train'):
inp = inp.to(args.device, non_blocking=True)
g_it = ep * iters_train + it
disc_g_it = g_it - disc_start
args.cur_it = f'{it+1}/{iters_train}'
min_glr, max_glr, min_gwd, max_gwd = lr_wd_annealing(args.sche, trainer.vae_opt.optimizer, args.vae_lr, args.vae_wd, g_it, wp_it, max_it, wp0=args.wp0, wpe=args.sche_end)
if disc_g_it >= 0:
min_dlr, max_dlr, min_dwd, max_dwd = lr_wd_annealing(args.sche, trainer.disc_opt.optimizer, args.disc_lr, args.disc_wd, disc_g_it, disc_wp_it, disc_max_it, wp0=args.wp0, wpe=args.sche_end)
else:
min_dlr = max_dlr = min_dwd = max_dwd = 0
stepping = (g_it + 1) % args.grad_accu == 0
step_cnt += int(stepping)
warmup_disc_schedule = 0 if disc_g_it < 0 else min(1.0, disc_g_it / disc_wp_it)
fade_blur_schedule = 0 if disc_g_it < 0 else min(1.0, disc_g_it / (disc_wp_it * 2))
fade_blur_schedule = 1 - fade_blur_schedule
grad_norm_g, scale_log2_g, grad_norm_d, scale_log2_d = trainer.train_step(
ep=ep, it=it, g_it=g_it, stepping=stepping, regularizing=args.reg > 0 and (g_it % args.reg_every == 0),
metric_lg=me, logging_params=stepping and step_cnt == 1 and (ep < 4 or ep in logging_params_milestone), tb_lg=tb_lg,
inp=inp,
warmup_disc_schedule=warmup_disc_schedule,
fade_blur_schedule=fade_blur_schedule,
maybe_record_function=maybe_record_function,
args=args,
)
with maybe_record_function('after_train'):
me.update(glr=max_glr, dlr=max_dlr)
tb_lg.set_step(step=g_it)
if tb_lg.loggable():
if args.max_nvidia_smi > 0:
tb_lg.update(head='Profiling/speed', iter_cost=args.iter_speed, img_per_day=args.img_per_day)
tb_lg.update(head='Profiling/cuda_mem', max_nvi_smi=args.max_nvidia_smi, max_alloc=args.max_memory_allocated, max_reserve=args.max_memory_reserved, alloc_retries=args.num_alloc_retries)
tb_lg.update(head='PT_opt_lr/lr_max', sche_glr=max_glr, sche_dlr=max_dlr)
tb_lg.update(head='PT_opt_lr/lr_min', sche_glr=min_glr, sche_dlr=min_dlr)
tb_lg.update(head='PT_opt_wd/wd_max', sche_gwd=max_gwd, sche_dwd=max_dwd)
tb_lg.update(head='PT_opt_wd/wd_min', sche_gwd=min_gwd, sche_dwd=min_dwd)
if scale_log2_g is not None:
tb_lg.update(head='PT_opt_grad/fp16', scale_log2_g=scale_log2_g, scale_log2_d=scale_log2_d)
tb_lg.update(head='PT_opt_grad/grad', grad_norm_g=grad_norm_g, grad_norm_d=grad_norm_d)
g_ratio = 1 if grad_norm_g is None else min(1.0, args.grad_clip / (grad_norm_g + 1e-7))
d_ratio = 1 if grad_norm_d is None else min(1.0, args.grad_clip / (grad_norm_d + 1e-7))
tb_lg.update(head='PT_opt_lr/lr_max', actu_glr=g_ratio*max_glr, actu_dlr=d_ratio*max_dlr)
tb_lg.update(head='PT_opt_lr/lr_min', actu_glr=g_ratio*min_glr, actu_dlr=d_ratio*min_dlr)
me.synchronize_between_processes()
return {k: meter.global_avg for k, meter in me.meters.items()}, me.iter_time.time_preds(max_it - (g_it + 1) + (args.ep - ep) * 15) # +15: other cost
def main_training():
args: arg_util.Args = arg_util.init_dist_and_get_args()
if args.dbg_unused:
torch.autograd.set_detect_anomaly(True)
ret = build_things_from_args(args)
if len(ret) < 8:
return ret
(
tb_lg, trainer,
start_ep, start_it, acc_str, eval_milestone, iters_train, ld_train,
) = ret
# import heavy packages after Dataloader object creation
from trainer import VAETrainer
ret: Tuple[
misc.TensorboardLogger, VAETrainer,
int, int, str, List[float], Optional[int], Optional[DataLoader],
]
saver = CKPTSaver(dist.is_master(), eval_milestone)
# train
start_time, min_Lnll, min_Ld, disc_start = time.time(), 999., 999., False
# seg8 = np.linspace(1, args.ep, 8+1, dtype=int).tolist()
seg5 = np.linspace(1, args.ep, 5+1, dtype=int).tolist()
# noinspection PyTypeChecker
logging_params_milestone: List[int] = np.linspace(1, args.ep, 10+1, dtype=int).tolist()
eval_milestone_ep = set(seg5[:]) # seg4
vis_milestone_ep = set(seg5[:]) | set(x for x in (2, 4, 8, 16) if x <= args.ep)
for x in [6, 12, 3, 24, 18, 48, 72, 96]:
if len(vis_milestone_ep) < 10 and x <= args.ep:
vis_milestone_ep.add(x)
# save_milestone = list(range(5, args.ep, 2)) + [args.ep - 1]
# for i, m in enumerate(save_milestone):
# if m != args.ep - 1 and m % 100 in {99, 0}:
# save_milestone[i] -= 1
# save_milestone = set(save_milestone)
# if 0 in save_milestone: save_milestone.remove(0)
print(f'[PT milestones] eval={sorted(eval_milestone_ep)} vis={sorted(vis_milestone_ep)}')
diff_t = torch.tensor([0.0, 0.0], dtype=torch.float32, device=args.device)
trainer.vae_opt.log_param(ep=-1, tb_lg=tb_lg)
trainer.disc_opt.log_param(ep=-1, tb_lg=tb_lg)
time.sleep(3), gc.collect(), torch.cuda.empty_cache(), time.sleep(3)
ep_lg = max(1, args.ep // 10) if args.ep <= 100 else max(1, args.ep // 20)
for ep in range(start_ep, args.ep):
if ep % ep_lg == 0 or ep == start_ep:
print(f'[PT info] this exp is from ep{start_ep} it{start_it}, acc_str: {acc_str}, diffs: {args.diffs}, ==========> bed: {args.bed} h2: {args.tb_log_dir_online} < ==========\n')
if hasattr(ld_train, 'sampler') and hasattr(ld_train.sampler, 'set_epoch'):
ld_train.sampler.set_epoch(ep)
if 0 <= ep <= 3:
print(f'[ld_train.sampler.set_epoch({ep})]')
tb_lg.set_step(ep * iters_train)
if args.flash_attn:
sdp_kernel_select_ctx = torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False)
else:
sdp_kernel_select_ctx = torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False)
if args.local_debug:
sdp_kernel_select_ctx = nullcontext()
with sdp_kernel_select_ctx:
stats, (sec, remain_time, finish_time) = train_one_ep(
ep, ep == start_ep, start_it if ep == start_ep else 0, saver, args, tb_lg, ld_train, iters_train, trainer, logging_params_milestone
)
Lnll, L1, Ld, wei_g = stats['NLL'], stats['L1'], stats['Ld'], stats['Wg']
min_Lnll, min_Ld = min(min_Lnll, Lnll), min(min_Ld, min_Ld if Ld < 1e-7 else Ld)
acc_real, acc_fake = stats.get('acc_real', -1), stats.get('acc_fake', -1)
acc_all = (acc_real + acc_fake) * 0.5
args.last_Lnll, args.last_L1, args.last_Ld, args.last_wei_g, args.acc_all, args.acc_real, args.acc_fake = Lnll, L1, Ld, wei_g, acc_all, acc_real, acc_fake
if not math.isfinite(Lnll + Ld + L1 + wei_g):
for n, v in zip(
('Lnll', 'Ld', 'L1', 'wei_g'),
(Lnll, Ld, L1, wei_g),
):
if not math.isfinite(v):
# noinspection PyArgumentList
print(f'[rk{dist.get_rank():02d}] {n} is {v}, stopping training!', force=True, flush=True)
sys.exit(666)
args.cur_phase = 'PT'
args.cur_ep = f'{ep+1}/{args.ep}'
args.remain_time, args.finish_time = remain_time, finish_time
from torch.nn.parallel import DistributedDataParallel as DDP
if isinstance(trainer.vae, DDP):
vae_ddp_static = trainer.vae._get_ddp_logging_data().get('can_set_static_graph')
disc_ddp_static = trainer.disc._get_ddp_logging_data().get('can_set_static_graph')
tail = colorama.Fore.LIGHTGREEN_EX + f' | static_graph: vae={vae_ddp_static}, disc={disc_ddp_static}' + colorama.Fore.RESET + colorama.Back.RESET + colorama.Style.RESET_ALL
else:
tail = ''
if ep > args.ep // 20:
print(f' [*] [ep{ep}] Min Lnll: {min_Lnll:.3f}, Ld: {min_Ld:.3f}, Remain: {remain_time}, Finish: {finish_time}' + tail)
tb_lg.update(head='PT_y_result', step=ep+1, min_Lnll=min_Lnll, min_Ld=None if min_Ld > 200 else min_Ld)
else:
print(f' [*] [ep{ep}] Remain: {remain_time}, Finish: {finish_time}' + tail)
disc_start = acc_all >= 0
if disc_start:
kw = dict(L1rec=L1, Lnll=Lnll, Ld=Ld, wei_g=wei_g, acc_all=acc_all, acc_fake=acc_fake, acc_real=acc_real)
else:
kw = dict(L1rec=L1, Lnll=Lnll)
tb_lg.update(head='PT_ep_loss', step=ep+1, **kw)
tb_lg.update(head='PT_z_burnout', step=ep+1, rest_hours=round(sec / 60 / 60, 2))
is_val_and_also_saving = (ep + 1) % 10 == 0 or (ep + 1) == args.ep
if is_val_and_also_saving:
print(f' [*] [ep{ep}] (val {tot}) Lm: {L_mean:.4f}, Lt: {L_tail:.4f}, Acc m&t: {acc_mean:.2f} {acc_tail:.2f}, Val cost: {cost:.2f}s')
if dist.is_local_master():
local_out_ckpt = os.path.join(args.local_out_dir_path, 'ckpt-last.pth')
local_out_ckpt_best = os.path.join(args.local_out_dir_path, 'ckpt-best.pth')
print(f'[saving ckpt] ...', end='', flush=True)
torch.save({
'epoch': ep+1,
'iter': 0,
'trainer': trainer.state_dict(),
'args': args.state_dict(),
}, local_out_ckpt)
if best_updated:
shutil.copy(local_out_ckpt, local_out_ckpt_best)
print(f' [saving ckpt](*) finished! @ {local_out_ckpt}', flush=True, clean=True)
dist.barrier()
total_time = f'{(time.time() - start_time) / 60 / 60:.1f}h'
print('\n\n')
print(f' [*] [finished] Total Time: {total_time}, Lg: {min_Lnll:.3f}, Ld: {min_Ld:.3f}')
print('\n\n')
del iters_train, ld_train
tb_lg.flush(); tb_lg.close()
dist.barrier()
class NullDDP(torch.nn.Module):
def __init__(self, module, *args, **kwargs):
super(NullDDP, self).__init__()
self.module = module
self.require_backward_grad_sync = False
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
if __name__ == '__main__':
try: main_training()
finally:
dist.finalize()
if isinstance(sys.stdout, dist.BackupStreamToFile) and isinstance(sys.stderr, dist.BackupStreamToFile):
sys.stdout.close(), sys.stderr.close()