Skip to content

FrsECM/exp-simclr_medium

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimCLR on MNIST CIFAR10 STL10

This project is a SimCLR training pipeline compatible with :

  • MNIST Dataset
  • CIFAR10 Dataset
  • TMarks Dataset
  • Shearo Dataset

To use this repo, install library / dependancies :

conda create --name vae
conda activate vae
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt

To launch a training:

python train_CLR.py    # train contrastive learning

In order to modify the dataset, you can use use argparse parameters.

SimCLR

In this repo, we have implemented :

What Code
A Convolutive Encoder $f(.)$
A Non Linear Projection Head $g(.)$
Augmentations $(t_1(.),t_2(.))$

Let's say we have an image $X$.
$X_1 = t_1(X)$ and $X_2 = t_2(X)$

We have features space :
$h_1=f(X_1)$ and $h_2=f(X_2)$

And the prediction space :
$z_1=g(h_1)$ and $z_2=g(h_2)$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages