-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathconfig.yml
248 lines (244 loc) · 7.38 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
Job:
run_mode: "Training"
#{Training, Predict, Repeat, CV, Hyperparameter, Ensemble, Analysis}
Training:
job_name: "my_train_job"
reprocess: "False"
model: CGCNN_demo
load_model: "False"
save_model: "True"
model_path: "my_model.pth"
write_output: "True"
parallel: "True"
#seed=0 means random initalization
seed: 0
Predict:
job_name: "my_predict_job"
reprocess: "False"
model_path: "my_model.pth"
write_output: "True"
seed: 0
Repeat:
job_name: "my_repeat_job"
reprocess: "False"
model: CGCNN_demo
model_path: "my_model.pth"
write_output: "False"
parallel: "True"
seed: 0
###specific options
#number of repeat trials
repeat_trials: 5
CV:
job_name: "my_CV_job"
reprocess: "False"
model: CGCNN_demo
write_output: "True"
parallel: "True"
seed: 0
###specific options
#number of folds for n-fold CV
cv_folds: 5
Hyperparameter:
job_name: "my_hyperparameter_job"
reprocess: "False"
model: CGCNN_demo
seed: 0
###specific options
hyper_trials: 10
#number of concurrent trials (can be greater than number of GPUs)
hyper_concurrency: 8
#frequency of checkpointing and update (default: 1)
hyper_iter: 1
#resume a previous hyperparameter optimization run
hyper_resume: "True"
#Verbosity of ray tune output; available: (1, 2, 3)
hyper_verbosity: 1
#Delete processed datasets
hyper_delete_processed: "True"
Ensemble:
job_name: "my_ensemble_job"
reprocess: "False"
save_model: "False"
model_path: "my_model.pth"
write_output: "Partial"
parallel: "True"
seed: 0
###specific options
#List of models to use: (Example: "CGCNN_demo,MPNN_demo,SchNet_demo,MEGNet_demo" or "CGCNN_demo,CGCNN_demo,CGCNN_demo,CGCNN_demo")
ensemble_list: "CGCNN_demo,CGCNN_demo,CGCNN_demo,CGCNN_demo,CGCNN_demo"
Analysis:
job_name: "my_job"
reprocess: "False"
model: CGCNN_demo
model_path: "my_model.pth"
write_output: "True"
seed: 0
Processing:
#Whether to use "inmemory" or "large" format for pytorch-geometric dataset. Reccomend inmemory unless the dataset is too large
dataset_type: "inmemory"
#Path to data files
data_path: "/data"
#Path to target file within data_path
target_path: "targets.csv"
#Method of obtaining atom idctionary: available:(provided, default, blank, generated)
dictionary_source: "default"
#Path to atom dictionary file within data_path
dictionary_path: "atom_dict.json"
#Format of data files (limit to those supported by ASE)
data_format: "json"
#Print out processing info
verbose: "True"
#graph specific settings
graph_max_radius : 8.0
graph_max_neighbors : 12
voronoi: "False"
edge_features: "True"
graph_edge_length : 50
#SM specific settings
SM_descriptor: "False"
#SOAP specific settings
SOAP_descriptor: "False"
SOAP_rcut : 8.0
SOAP_nmax : 6
SOAP_lmax : 4
SOAP_sigma : 0.3
Training:
#Index of target column in targets.csv
target_index: 0
#Loss functions (from pytorch) examples: l1_loss, mse_loss, binary_cross_entropy
loss: "l1_loss"
#Ratios for train/val/test split out of a total of 1
train_ratio: 0.8
val_ratio: 0.05
test_ratio: 0.15
#Training print out frequency (print per n number of epochs)
verbosity: 5
Models:
CGCNN_demo:
model: CGCNN
dim1: 100
dim2: 150
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
pool: "global_mean_pool"
pool_order: "early"
batch_norm: "True"
batch_track_stats: "True"
act: "relu"
dropout_rate: 0.0
epochs: 250
lr: 0.002
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
MPNN_demo:
model: MPNN
dim1: 100
dim2: 100
dim3: 100
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
pool: "global_mean_pool"
pool_order: "early"
batch_norm: "True"
batch_track_stats: "True"
act: "relu"
dropout_rate: 0.0
epochs: 250
lr: 0.001
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
SchNet_demo:
model: SchNet
dim1: 100
dim2: 100
dim3: 150
cutoff: 8
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
pool: "global_mean_pool"
pool_order: "early"
batch_norm: "True"
batch_track_stats: "True"
act: "relu"
dropout_rate: 0.0
epochs: 250
lr: 0.0005
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
MEGNet_demo:
model: MEGNet
dim1: 100
dim2: 100
dim3: 100
pre_fc_count: 1
gc_count: 4
gc_fc_count: 1
post_fc_count: 3
pool: "global_mean_pool"
pool_order: "early"
batch_norm: "True"
batch_track_stats: "True"
act: "relu"
dropout_rate: 0.0
epochs: 250
lr: 0.0005
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
GCN_demo:
model: GCN
dim1: 100
dim2: 150
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
pool: "global_mean_pool"
pool_order: "early"
batch_norm: "True"
batch_track_stats: "True"
act: "relu"
dropout_rate: 0.0
epochs: 250
lr: 0.002
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
SM_demo:
model: SM
dim1: 100
fc_count: 2
epochs: 200
lr: 0.002
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}
SOAP_demo:
model: SOAP
dim1: 100
fc_count: 2
epochs: 200
lr: 0.002
batch_size: 100
optimizer: "AdamW"
optimizer_args: {}
scheduler: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}