- Efficient Global Optimization (EGO)
- tags: optimization; sparse
- author: yann.richet@irsn.fr; DiceKriging authors
- require: DiceDesign; DiceKriging; DiceView; pso; jsonlite
- options: search_ymin='true'; initBatchSize='4'; batchSize='4'; iterations='10'; initBatchBounds='true'; trend='y~1'; covtype='matern3_2'; knots='0'; liar='upper95'; seed='1'
- options.help: search_ymin=minimization or maximisation; initBatchSize=Initial batch size; batchSize=iterations batch size; iterations=number of iterations; initBatchBounds=add input variables bounding values (2^d combinations); trend=(Universal) kriging trend; covtype=Kriging covariance kernel; knots=number of non-stationary points for each Xi; liar=liar value for in-batch loop (when batchsize>1); seed=random seed
- input: x=list(min=0,max=1)
- output: y=0.99
- Efficient Global Optimization (EGO) algorithm with equality constraints.
- tags: optimization; sparse; contraints
- author: yann.richet@irsn.fr; DiceKriging authors
- require: DiceDesign; DiceKriging; DiceView; pso; jsonlite
- options: search_ymin='true'; initBatchSize='4'; batchSize='4'; iterations='10'; initBatchBounds='true'; trend='y
1'; covtype='matern3_2'; knots='0'; liar='upper95'; trend_constr='y1'; covtype_constr='matern3_2'; liar_constr='upper95'; seed='1' - options.help: search_ymin=minimization or maximisation; initBatchSize=Initial batch size; batchSize=iterations batch size; iterations=number of iterations; initBatchBounds=add input variables bounding values (2^d combinations); trend=(Universal) kriging trend; covtype=Kriging covariance kernel; knots=number of non-stationary points for each Xi; liar=liar value for in-batch loop (when batchsize>1); seed=random seed
- input: x=list(min=0,max=1)
- output: y=0.99