forked from PetarV-/DGI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute.py
149 lines (115 loc) · 3.5 KB
/
execute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
from models import DGI, LogReg
from utils import process
dataset = 'cora'
# training params
batch_size = 1
nb_epochs = 10000
patience = 20
lr = 0.001
l2_coef = 0.0
drop_prob = 0.0
hid_units = 512
sparse = True
nonlinearity = 'prelu' # special name to separate parameters
adj, features, labels, idx_train, idx_val, idx_test = process.load_data(dataset)
features, _ = process.preprocess_features(features)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
nb_classes = labels.shape[1]
adj = process.normalize_adj(adj + sp.eye(adj.shape[0]))
if sparse:
sp_adj = process.sparse_mx_to_torch_sparse_tensor(adj)
else:
adj = (adj + sp.eye(adj.shape[0])).todense()
features = torch.FloatTensor(features[np.newaxis])
if not sparse:
adj = torch.FloatTensor(adj[np.newaxis])
labels = torch.FloatTensor(labels[np.newaxis])
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
model = DGI(ft_size, hid_units, nonlinearity)
optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef)
if torch.cuda.is_available():
print('Using CUDA')
model.cuda()
features = features.cuda()
if sparse:
sp_adj = sp_adj.cuda()
else:
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
b_xent = nn.BCEWithLogitsLoss()
xent = nn.CrossEntropyLoss()
cnt_wait = 0
best = 1e9
best_t = 0
for epoch in range(nb_epochs):
model.train()
optimiser.zero_grad()
idx = np.random.permutation(nb_nodes)
shuf_fts = features[:, idx, :]
lbl_1 = torch.ones(batch_size, nb_nodes)
lbl_2 = torch.zeros(batch_size, nb_nodes)
lbl = torch.cat((lbl_1, lbl_2), 1)
if torch.cuda.is_available():
shuf_fts = shuf_fts.cuda()
lbl = lbl.cuda()
logits = model(features, shuf_fts, sp_adj if sparse else adj, sparse, None, None, None)
loss = b_xent(logits, lbl)
print('Loss:', loss)
if loss < best:
best = loss
best_t = epoch
cnt_wait = 0
torch.save(model.state_dict(), 'best_dgi.pkl')
else:
cnt_wait += 1
if cnt_wait == patience:
print('Early stopping!')
break
loss.backward()
optimiser.step()
print('Loading {}th epoch'.format(best_t))
model.load_state_dict(torch.load('best_dgi.pkl'))
embeds, _ = model.embed(features, sp_adj if sparse else adj, sparse, None)
train_embs = embeds[0, idx_train]
val_embs = embeds[0, idx_val]
test_embs = embeds[0, idx_test]
train_lbls = torch.argmax(labels[0, idx_train], dim=1)
val_lbls = torch.argmax(labels[0, idx_val], dim=1)
test_lbls = torch.argmax(labels[0, idx_test], dim=1)
tot = torch.zeros(1)
tot = tot.cuda()
accs = []
for _ in range(50):
log = LogReg(hid_units, nb_classes)
opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)
log.cuda()
pat_steps = 0
best_acc = torch.zeros(1)
best_acc = best_acc.cuda()
for _ in range(100):
log.train()
opt.zero_grad()
logits = log(train_embs)
loss = xent(logits, train_lbls)
loss.backward()
opt.step()
logits = log(test_embs)
preds = torch.argmax(logits, dim=1)
acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0]
accs.append(acc * 100)
print(acc)
tot += acc
print('Average accuracy:', tot / 50)
accs = torch.stack(accs)
print(accs.mean())
print(accs.std())