forked from nv-tlabs/GSCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
executable file
·94 lines (79 loc) · 2.83 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
# Code adapted from:
# https://github.com/facebookresearch/Detectron/blob/master/detectron/core/config.py
Source License
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
#
# Based on:
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import six
import os.path as osp
from ast import literal_eval
import numpy as np
import yaml
import torch
import torch.nn as nn
from torch.nn import init
from utils.AttrDict import AttrDict
__C = AttrDict()
# Consumers can get config by:
# from fast_rcnn_config import cfg
cfg = __C
__C.EPOCH = 0
__C.CLASS_UNIFORM_PCT=0.0
__C.BATCH_WEIGHTING=False
__C.BORDER_WINDOW=1
__C.REDUCE_BORDER_EPOCH= -1
__C.STRICTBORDERCLASS= None
__C.DATASET =AttrDict()
__C.DATASET.CITYSCAPES_DIR='/home/username/data/cityscapes'
__C.DATASET.CV_SPLITS=3
__C.MODEL = AttrDict()
__C.MODEL.BN = 'regularnorm'
__C.MODEL.BNFUNC = torch.nn.BatchNorm2d
__C.MODEL.BIGMEMORY = False
def assert_and_infer_cfg(args, make_immutable=True):
"""Call this function in your script after you have finished setting all cfg
values that are necessary (e.g., merging a config from a file, merging
command line config options, etc.). By default, this function will also
mark the global cfg as immutable to prevent changing the global cfg settings
during script execution (which can lead to hard to debug errors or code
that's harder to understand than is necessary).
"""
if args.batch_weighting:
__C.BATCH_WEIGHTING=True
if args.syncbn:
import encoding
__C.MODEL.BN = 'syncnorm'
__C.MODEL.BNFUNC = encoding.nn.BatchNorm2d
else:
__C.MODEL.BNFUNC = torch.nn.BatchNorm2d
print('Using regular batch norm')
if make_immutable:
cfg.immutable(True)