-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
159 changed files
with
6,344 additions
and
2,498 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,96 +1,171 @@ | ||
function [x,y,tolA,tolB]=ABfgPreEliminate(CtrlVar,A,B,f,g) | ||
|
||
|
||
|
||
[nA,mA]=size(A); | ||
[nB,mB]=size(B); | ||
[nf,mf]=size(f); | ||
|
||
if isempty(B) && isempty(g) && ~isempty(A) && ~isempty(f) && mA==nf | ||
|
||
% Possibly not needed, but check if this is not just a very simple case of B=g=[] | ||
|
||
x=A\f; | ||
y=NaN; | ||
|
||
if nargout>2 | ||
tolB=NaN; | ||
tolA=norm(A*x-f)/norm(f); | ||
function [x,y,dAtilde,tolA,tolB]=ABfgPreEliminate(CtrlVar,A,B,f,g,dAtilde) | ||
|
||
|
||
narginchk(5,6) | ||
|
||
if nargin< 6 | ||
dAtilde=[]; | ||
end | ||
|
||
[nA,mA]=size(A); | ||
[nB,mB]=size(B); | ||
[nf,mf]=size(f); | ||
|
||
|
||
if isempty(B) && isempty(g) && ~isempty(A) && ~isempty(f) && mA==nf | ||
|
||
% Possibly not needed, but check if this is not just a very simple case of B=g=[] | ||
|
||
x=A\f; | ||
y=NaN; | ||
|
||
if nargout>3 | ||
tolB=NaN; | ||
tolA=norm(A*x-f)/norm(f); | ||
end | ||
|
||
else | ||
|
||
BBT=B*B'; | ||
|
||
if isdiag(BBT) % the method assumes that B B' is diagonal | ||
|
||
|
||
% It also assumes that B B' is a unity matrix, but if not then simple scaling can be used | ||
% to ensure that this is the case. | ||
% To make this a bit more general, I here check if B B' is indeed unity, and | ||
% if not I do the requried scaling. | ||
tolerance=eps*1000; | ||
isBBTunity=all(abs(diag(BBT) - 1) < tolerance) ; | ||
|
||
if ~isBBTunity | ||
[B,g,~,Scale]=ScaleL(CtrlVar,B,g) ; | ||
else | ||
Scale=1; | ||
end | ||
|
||
% For numerical reasons a further simple scaling of A is done to bring the | ||
% sizes of the elements of A in line with those of B. | ||
factor=1./(full(mean(abs(diag(A))))); | ||
|
||
if ~isfinite(factor) % just in case all elements along the diagonal happen to be equal to zero | ||
factor=1; | ||
end | ||
|
||
BtB=B'*B; | ||
|
||
A=factor*A ; f=factor*f ; % this leaves x unaffected but y is scaled | ||
|
||
|
||
|
||
Q=speye(nA,nA)-BtB ; | ||
Atilde=Q*A+ BtB ; | ||
btilde=(Q*f+B'*g) ; | ||
|
||
|
||
if CtrlVar.Parallel.isTest | ||
|
||
% seq: | ||
|
||
% distribute | ||
tSeq=tic ; | ||
dAtildeSeq=decomposition(Atilde); % this might not be needed if this has been done already, but for speed comparison this is done here each time | ||
xSeq=dAtildeSeq\btilde; | ||
tSeq=toc(tSeq) ; | ||
|
||
|
||
% distribute | ||
tDistributed=tic ; | ||
AtildeDist=distributed(Atilde); | ||
btildeDist=distributed(btilde); | ||
dAtildeDist=decomposition(AtildeDist); % this might not be needed if this has been done already, but for speed comparison this is done here each time | ||
xDist=dAtildeDist\btildeDist; | ||
tDistributed=toc(tDistributed) ; | ||
|
||
else | ||
|
||
BBT=B*B'; | ||
|
||
if isdiag(BBT) % the method assumes that B B' is diagonal | ||
|
||
|
||
% It also assumes that B B' is a unity matrix, but if not then simple scaling can be used | ||
% to ensure that this is the case. | ||
% To make this a bit more general, I here check if B B' is indeed unity, and | ||
% if not I do the requried scaling. | ||
tolerance=eps*1000; | ||
isBBTunity=all(abs(diag(BBT) - 1) < tolerance) ; | ||
|
||
if ~isBBTunity | ||
[B,g,~,Scale]=ScaleL(CtrlVar,B,g) ; | ||
else | ||
Scale=1; | ||
[nAtilde,mAtilde]=size(Atilde); | ||
fprintf('\n ----------------------------- Info on distributed solve performance : \n') | ||
fprintf('%i x %i : tSeq=%f \t tDistributed=%f \t tSeq/rDistributed=%f \n',nAtilde,mAtilde,tSeq,tDistributed,tSeq/tDistributed) ; | ||
fprintf(' norm(xSeq-xDist)/norm(xSeq)=%g \n',full(norm(xSeq-xDist)/norm(xSeq))) | ||
fprintf(' ----------------------------- \n') | ||
|
||
|
||
end | ||
|
||
|
||
% https://uk.mathworks.com/help/parallel-computing/benchmarking-a-b.html | ||
if CtrlVar.Parallel.Distribute | ||
if ~isdistributed(Atilde) | ||
Atilde=distributed(Atilde); | ||
end | ||
|
||
% For numerical reasons a further simple scaling of A is done to bring the | ||
% sizes of the elements of A in line with those of B. | ||
factor=1./(full(mean(abs(diag(A))))); | ||
|
||
if ~isfinite(factor) % just in case all elements along the diagonal happen to be equal to zero | ||
factor=1; | ||
if ~isdistributed(btilde) | ||
btilde=distributed(btilde); | ||
end | ||
|
||
BtB=B'*B; | ||
|
||
A=factor*A ; f=factor*f ; % this leaves x unaffected but y is scaled | ||
|
||
|
||
|
||
Q=speye(nA,nA)-BtB ; | ||
Atilde=Q*A+ BtB ; | ||
btilde=(Q*f+B'*g) ; | ||
|
||
|
||
%dAtilde=factorize(Atilde); % for some reason, this does make things slower | ||
|
||
x=Atilde\btilde; | ||
y=B*(f-A*x); | ||
|
||
% Now the solution of the scaled system has been found. | ||
|
||
y=y/factor; | ||
|
||
if nargout>2 | ||
% check if within tolerances | ||
|
||
A=A/factor ; | ||
f=f/factor ; | ||
tolA=norm(A*x+B'*y-f)/norm(f); | ||
tolB=norm(B*x-g); | ||
|
||
if tolA>1e-6 || tolB>1e-6 | ||
|
||
fprintf('ABfgPreEliminate: Error seems too large or \t \t \t %g \t %g \n ',norm(A*x+B'*y-f)/norm(f),norm(B*x-g)) | ||
|
||
end | ||
end | ||
|
||
% decomposition is about the same, and as expected this only speeds things up if several solves with the same matrix | ||
% are needed. | ||
% | ||
tDecomposition=tic; | ||
if isempty(dAtilde) | ||
dAtilde=decomposition(Atilde); | ||
end | ||
tDecomposition=toc(tDecomposition) ; | ||
|
||
tSolve=tic; | ||
x=dAtilde\btilde; | ||
tSolve=toc(tSolve); | ||
|
||
% tSolve=tic; | ||
% x=Atilde\btilde; | ||
% tSolve=toc(tSolve); | ||
|
||
% [tDecomposition tSolve] | ||
|
||
if isdistributed(x) | ||
x=gather(x) ; | ||
end | ||
% toc | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
y=B*(f-A*x); | ||
|
||
% Now the solution of the scaled system has been found. | ||
|
||
y=y/factor; | ||
|
||
if nargout>3 | ||
% check if within tolerances | ||
|
||
A=A/factor ; | ||
f=f/factor ; | ||
tolA=norm(A*x+B'*y-f)/norm(f); | ||
tolB=norm(B*x-g); | ||
|
||
if tolA>1e-6 || tolB>1e-6 | ||
|
||
fprintf('ABfgPreEliminate: Error seems too large or \t \t \t %g \t %g \n ',norm(A*x+B'*y-f)/norm(f),norm(B*x-g)) | ||
|
||
end | ||
|
||
y=Scale*y; % and now scale y in case B and g were scaled above. | ||
|
||
else | ||
|
||
|
||
error('ABfgPreEliminate:B','B*B^T not diagonal') | ||
end | ||
|
||
|
||
y=Scale*y; % and now scale y in case B and g were scaled above. | ||
|
||
else | ||
|
||
|
||
error('ABfgPreEliminate:B','B*B^T not diagonal') | ||
end | ||
|
||
|
||
end | ||
|
||
end | ||
|
||
|
Oops, something went wrong.