-
Notifications
You must be signed in to change notification settings - Fork 6
/
losses.py
178 lines (145 loc) · 7.28 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""All functions related to loss computation and optimization."""
import torch
import torch.optim as optim
import numpy as np
from models import utils as mutils
from sde_lib import VPSDE
def get_optimizer(config, params):
"""Return a flax optimizer object based on `config`."""
if config.optim.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=config.optim.lr, betas=(config.optim.beta1, 0.999), eps=config.optim.eps,
weight_decay=config.optim.weight_decay)
else:
raise NotImplementedError(
f'Optimizer {config.optim.optimizer} not supported yet!'
)
return optimizer
def optimization_manager(config):
"""Return an optimize_fn based on `config`."""
def optimize_fn(optimizer, params, step, lr=config.optim.lr,
warmup=config.optim.warmup,
grad_clip=config.optim.grad_clip):
"""Optimize with warmup and gradient clipping (disabled if negative)."""
if warmup > 0:
for g in optimizer.param_groups:
g['lr'] = lr * np.minimum(step / warmup, 1.0)
if grad_clip >= 0:
torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip)
optimizer.step()
return optimize_fn
def get_sde_loss_fn(sde, train, reduce_mean=True, continuous=True, likelihood_weighting=True, eps=1e-5):
"""Create a loss function for training with arbitrary SDEs.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
train: `True` for training loss and `False` for evaluation loss.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise, sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
Otherwise, it requires ad-hoc interpolation to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according
to https://arxiv.org/abs/2101.09258; otherwise, use the weighting recommended in Score SDE paper.
eps: A `float` number. The smallest time step to sample from.
Returns:
A loss function.
"""
# reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
def loss_fn(model, batch):
"""Compute the loss function.
Args:
model: A score model.
batch: A mini-batch of training data, including adjacency matrices and mask.
Returns:
loss: A scalar that represents the average loss value across the mini-batch.
"""
adj, mask = batch
score_fn = mutils.get_score_fn(sde, model, train=train, continuous=continuous)
t = torch.rand(adj.shape[0], device=adj.device) * (sde.T - eps) + eps
z = torch.randn_like(adj) # [B, C, N, N]
z = torch.tril(z, -1)
z = z + z.transpose(2, 3)
mean, std = sde.marginal_prob(adj, t)
mean = torch.tril(mean, -1)
mean = mean + mean.transpose(2, 3)
perturbed_data = mean + std[:, None, None, None] * z
score = score_fn(perturbed_data, t, mask=mask)
mask = torch.tril(mask, -1)
mask = mask + mask.transpose(2, 3)
mask = mask.reshape(mask.shape[0], -1) # low triangular part of adj matrices
if not likelihood_weighting:
losses = torch.square(score * std[:, None, None, None] + z)
losses = losses.reshape(losses.shape[0], -1)
if reduce_mean:
losses = torch.sum(losses * mask, dim=-1) / torch.sum(mask, dim=-1)
else:
losses = 0.5 * torch.sum(losses * mask, dim=-1)
loss = losses.mean()
else:
g2 = sde.sde(torch.zeros_like(adj), t)[1] ** 2
losses = torch.square(score + z / std[:, None, None, None])
losses = losses.reshape(losses.shape[0], -1)
if reduce_mean:
losses = torch.sum(losses * mask, dim=-1) / torch.sum(mask, dim=-1)
else:
losses = 0.5 * torch.sum(losses * mask, dim=-1)
loss = (losses * g2).mean()
return loss
return loss_fn
def get_step_fn(sde, train, optimize_fn=None, reduce_mean=False, continuous=True, likelihood_weighting=False):
"""Create a one-step training/evaluation function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
Tuple (`sde_lib.SDE`, `sde_lib.SDE`) that represents the forward node SDE and edge SDE.
optimize_fn: An optimization function.
reduce_mean: If `True`, average the loss across data dimensions.
Otherwise, sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according to
https://arxiv.org/abs/2101.09258; otherwise, use the weighting recommended by score-sde.
Returns:
A one-step function for training or evaluation.
"""
if continuous:
if isinstance(sde, tuple):
loss_fn = get_multi_sde_loss_fn(sde[0], sde[1], train, reduce_mean=reduce_mean, continuous=True,
likelihood_weighting=likelihood_weighting)
else:
loss_fn = get_sde_loss_fn(sde, train, reduce_mean=reduce_mean,
continuous=True, likelihood_weighting=likelihood_weighting)
else:
assert not likelihood_weighting, "Likelihood weighting is not supported for original SMLD/DDPM training."
if isinstance(sde, VESDE):
loss_fn = get_smld_loss_fn(sde, train, reduce_mean=reduce_mean)
elif isinstance(sde, VPSDE):
loss_fn = get_ddpm_loss_fn(sde, train, reduce_mean=reduce_mean)
elif isinstance(sde, tuple):
raise ValueError("Discrete training for multi sde is not recommended.")
else:
raise ValueError(f"Discrete training for {sde.__class__.__name__} is not recommended.")
def step_fn(state, batch):
"""Running one step of training or evaluation.
For jax version: This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and
jit-compiled together for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data, including min-batch adjacency matrices and mask.
Returns:
loss: The average loss value of this state.
"""
model = state['model']
if train:
optimizer = state['optimizer']
optimizer.zero_grad()
loss = loss_fn(model, batch)
loss.backward()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
state['ema'].update(model.parameters())
else:
with torch.no_grad():
ema = state['ema']
ema.store(model.parameters())
ema.copy_to(model.parameters())
loss = loss_fn(model, batch)
ema.restore(model.parameters())
return loss
return step_fn