Skip to content

GREYXXX/PSO-GBDT

Repository files navigation

Gradient Boosting Decision Tree Training using PSO

Packages Required

In order to run the main program, you need to install the following packages.

These packages are:

  • Numpy
  • Pandas
  • XGBoost
  • Sklearn
  • CatBoost
  • pickle
  • matplotlib

Experiment

Use the following command to run experiment for both SGBDT and PSGBDT.

Run SGBDT by python run.py

You can specify the dataset path by --dataset_path $dataset name , currelty support

  • BankNote.csv (classification)
  • wine.csv (classification)
  • winequality-red.csv (regression)
  • higgs_0.005.csv (classification)
  • covat_0.3.csv (classification)
  • insurance.csv (regression)
  • kc_house_data.csv (regression)

and --model_type need to be specified by

  • binary_cf
  • regressiom

with respect to the type of dataset

Run PSGBDT by specifying the --pretrain_file and --pretrain_type, pretrain files are under the folder pretrain_models. And --pretrain_type needs to set as either xgb or skr

Example

Run SGBDT:

python run.py --dataset_path kc_house_data.csv --model_type regression

Run PSGBDT:

python run.py --dataset_path kc_house_data.csv --model_type regression --pretrain_file kc_house.pkl --pretrain_type xgb

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages