-
Notifications
You must be signed in to change notification settings - Fork 6
/
Utilities.hh
427 lines (387 loc) · 13.7 KB
/
Utilities.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#ifndef UTILITIES_HH
#define UTILITIES_HH
#include <iostream>
#include <sstream>
#include <iomanip>
#include <string>
#include <vector>
#include <sys/stat.h>
#include <limits>
#include <dirent.h>
#include "TVectorT.h"
//-------------------- three function templates that print all arguments into a string
//last template uses existing stream and appends the last argument to it
template <typename T>
void Append(std::stringstream& stream, const T& tail) {
//append last argument
stream<<tail;
}
//first template uses existing stream and appends to it
template <typename T, typename... U>
void Append(std::stringstream& stream, const T& head, const U&... tail) {
//append first argument
stream<<head;
//reversely call this template (or the third)
Append(stream,tail...);
}
//this function typically gets called by user
template <typename T, typename... U>
std::string Show(const T& head, const U&... tail) {
//print first arguments to string
std::stringstream stream;
stream<<head;
//call the second template (or the third if tail is just one argument)
Append(stream,tail...);
return stream.str();
}
//quick sort from numerical recipes in c, adapted to c++
#define MINIMUM_LENGTH 7
template <class T>
void Swap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}
TVectorD CreateIndex(TVectorD, std::vector<size_t>&);
bool FileExists(std::string);
bool FileExists(const char*);
bool DirectoryExists(std::string);
bool DirectoryExists(const char*);
bool IsDirectory(std::string);
bool IsDirectory(const char*);
std::vector<std::string> GetFilesInDirectory(std::string);
std::vector<std::string> GetFilesInDirectory(const char*);
template <typename T>
inline bool IsNan(T value) {
return value != value;
}
template <typename T>
inline bool IsInfinite(T value) {
return std::numeric_limits<T>::has_infinity &&
value == std::numeric_limits<T>::infinity();
}
template <typename T>
inline bool IsPowerOfTwo (T x) {
return ((x != 0) && ((x & (~x + 1)) == x));
}
//template <class T>
//std::string FormatNumber(T value, T error) {
// //if the value and the error are zero we use precision 1
// int precision = 1;
//
// if(error < (T) 0) {
// error = Abs(error);
// }
// //error < 1: get the precision as negative logarithm, divide by two to get two digits for numbers starting with 1
// if(error < (T) 1) {
// precision = ceil(-1.*log10(error/2));
// } else {
// precision = ???;
// }
//
// std::stringstream Stream;
// Stream.precision(precision);
// Stream<<value<<" +- "<<error;
//
// return Stream.str();
//}
//Indexes an array, i.e., outputs the array index such that array[index[j]] is
//in ascending order for j = 0, 1, . . . ,N-1. The input quantity array is not changed.
//returns the sorted array
//template has to be defined in the header (or use the export feature)
template <class T>
std::vector<T> CreateIndex(std::vector<T> array, std::vector<size_t>& index) {
size_t tempIndex;
size_t lowerIndex;
size_t upperIndex;
size_t leftIndex = 0;
size_t rightIndex = array.size() - 1;
size_t median;
T temp;
std::vector<size_t> stack(0);
index.resize(array.size());
//initialise index to ascending numbers
for(lowerIndex = 0; lowerIndex < array.size(); lowerIndex++) {
index[lowerIndex] = lowerIndex;
}
//cout<<"initialised index"<<endl;
while(true) {
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//if the remaining subarray is small enough do insertion sort
if(rightIndex - leftIndex < MINIMUM_LENGTH) {
for(lowerIndex = leftIndex + 1; lowerIndex <= rightIndex; lowerIndex++) {
tempIndex = index[lowerIndex];
temp = array[tempIndex];
//upperIndex is unsigned => if it's zero the end (--) makes it very big!
//so we do an extra check and break the loop if upperIndex get's zero
for(upperIndex = lowerIndex-1; upperIndex >= leftIndex; upperIndex--) {
//cout<<"insertion: "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
if(array[index[upperIndex]] <= temp) {
break;
}
index[upperIndex+1] = index[upperIndex];
if(upperIndex == 0) {
upperIndex--;
break;
}
}
index[upperIndex+1] = tempIndex;
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
}
if(stack.size() < 1) {
break;
}
//pop stack and continue another round of partioning
rightIndex = stack.back();
stack.pop_back();
leftIndex = stack.back();
stack.pop_back();
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
} else {
//choose median of left and right as partitioning element
median = (leftIndex+rightIndex)/2;
Swap(index[median],index[leftIndex+1]);
//cout<<"median = "<<median<<endl;
//rearrange so that a[l] <= a[l+1] <= a[r]
if(array[index[leftIndex]] > array[index[rightIndex]]) {
Swap(index[leftIndex],index[rightIndex]);
}
if(array[index[leftIndex+1]] > array[index[rightIndex]]) {
Swap(index[leftIndex+1],index[rightIndex]);
}
if(array[index[leftIndex]] > array[index[leftIndex+1]]) {
Swap(index[leftIndex],index[leftIndex+1]);
}
//initialize partitioning indices
lowerIndex = leftIndex+1;
upperIndex = rightIndex;
tempIndex = index[leftIndex+1];
//partitioning element
temp = array[tempIndex];
while(true) {
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//cout<<"1. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//scan up to find element >= partitioning element
do lowerIndex++; while(array[index[lowerIndex]] < temp);
//cout<<"2. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//scan down to find element <= partitioning element
do upperIndex--; while(array[index[upperIndex]] > temp);
//cout<<"3. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//pointers crossed => partitioning finished after swaping of elements
if(upperIndex < lowerIndex) {
break;
}
Swap(index[lowerIndex],index[upperIndex]);
}
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//cout<<"4. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//insert the partitioning element
index[leftIndex+1]=index[upperIndex];
index[upperIndex]=tempIndex;
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//put the indices of the larger subarray on the stack and process the other one directly
//one array goes from left to upper index, the other from lower to right index
if(rightIndex - lowerIndex + 1 >= upperIndex - leftIndex) {
stack.push_back(lowerIndex);
stack.push_back(rightIndex);
rightIndex = upperIndex - 1;
} else {
stack.push_back(leftIndex);
stack.push_back(upperIndex - 1);
leftIndex = lowerIndex;
}
}//else of if(rightIndex - leftIndex < MINIMUM_LENGTH)
}//while(true)
std::vector<T> result(array.size());
for(size_t i = 0; i < array.size(); i++) {
result[i] = array[index[i]];
}
return result;
}
//Indexes an array, i.e., outputs the array index such that array[index[j]] is
//in ascending order for j = 0, 1, . . . ,N-1. The input quantity array is not changed.
//returns the inverse index array (InverseIndexArray[IndexArray[i]] = i)
//template has to be defined in the header (or use the export feature)
template <class T>
std::vector<size_t> CreateInverseIndex(std::vector<T> array, std::vector<size_t>& index) {
size_t tempIndex;
size_t lowerIndex;
size_t upperIndex;
size_t leftIndex = 0;
size_t rightIndex = array.size() - 1;
size_t median;
T temp;
std::vector<size_t> stack(0);
index.resize(array.size());
//initialise index to ascending numbers
for(lowerIndex = 0; lowerIndex < array.size(); lowerIndex++) {
index[lowerIndex] = lowerIndex;
}
//cout<<"initialised index"<<endl;
while(true) {
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//if the remaining subarray is small enough do insertion sort
if(rightIndex - leftIndex < MINIMUM_LENGTH) {
for(lowerIndex = leftIndex + 1; lowerIndex <= rightIndex; lowerIndex++) {
tempIndex = index[lowerIndex];
temp = array[tempIndex];
//upperIndex is unsigned => if it's zero the end (--) makes it very big!
//so we do an extra check and break the loop if upperIndex get's zero
for(upperIndex = lowerIndex-1; upperIndex >= leftIndex; upperIndex--) {
//cout<<"insertion: "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
if(array[index[upperIndex]] <= temp) {
break;
}
index[upperIndex+1] = index[upperIndex];
if(upperIndex == 0) {
upperIndex--;
break;
}
}
index[upperIndex+1] = tempIndex;
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
}
if(stack.size() < 1) {
break;
}
//pop stack and continue another round of partioning
rightIndex = stack.back();
stack.pop_back();
leftIndex = stack.back();
stack.pop_back();
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
} else {
//choose median of left and right as partitioning element
median = (leftIndex+rightIndex)/2;
Swap(index[median],index[leftIndex+1]);
//cout<<"median = "<<median<<endl;
//rearrange so that a[l] <= a[l+1] <= a[r]
if(array[index[leftIndex]] > array[index[rightIndex]]) {
Swap(index[leftIndex],index[rightIndex]);
}
if(array[index[leftIndex+1]] > array[index[rightIndex]]) {
Swap(index[leftIndex+1],index[rightIndex]);
}
if(array[index[leftIndex]] > array[index[leftIndex+1]]) {
Swap(index[leftIndex],index[leftIndex+1]);
}
//initialize partitioning indices
lowerIndex = leftIndex+1;
upperIndex = rightIndex;
tempIndex = index[leftIndex+1];
//partitioning element
temp = array[tempIndex];
while(true) {
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//cout<<"1. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//scan up to find element >= partitioning element
do lowerIndex++; while(array[index[lowerIndex]] < temp);
//cout<<"2. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//scan down to find element <= partitioning element
do upperIndex--; while(array[index[upperIndex]] > temp);
//cout<<"3. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//pointers crossed => partitioning finished after swaping of elements
if(upperIndex < lowerIndex) {
break;
}
Swap(index[lowerIndex],index[upperIndex]);
}
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//cout<<"4. "<<leftIndex<<" - "<<rightIndex<<", "<<lowerIndex<<" - "<<upperIndex<<endl;
//insert the partitioning element
index[leftIndex+1]=index[upperIndex];
index[upperIndex]=tempIndex;
//for(size_t ind = 0; ind < array.size(); ind++)
// {
// cout<<setw(8)<<array[ind]<<" "<<setw(8)<<index[ind]<<" "<<setw(8)<<array[index[ind]]<<endl;
// }
//cout<<endl;
//put the indices of the larger subarray on the stack and process the other one directly
//one array goes from left to upper index, the other from lower to right index
if(rightIndex - lowerIndex + 1 >= upperIndex - leftIndex) {
stack.push_back(lowerIndex);
stack.push_back(rightIndex);
rightIndex = upperIndex - 1;
} else {
stack.push_back(leftIndex);
stack.push_back(upperIndex - 1);
leftIndex = lowerIndex;
}
}//else of if(rightIndex - leftIndex < MINIMUM_LENGTH)
}//while(true)
std::vector<size_t> result(array.size());
for(size_t i = 0; i < array.size(); i++) {
result[index[i]] = i;
}
return result;
}
//create a vector of unique indexes, each giving the first instance of a value of class T in the given array
template <class T>
std::vector<size_t> UniqueIndexes(std::vector<T> array) {
std::vector<size_t> result;
if(array.size() == 0) {
return result;
}
//since we always use the first instance, 0 is always used
result.push_back(0);
size_t i,j;
//loop over all other members of the array
for(i = 1; i < array.size(); ++i) {
//loop over all existing indexes and check whether the current array object matches any of them
for(j = 0; j < result.size(); ++j) {
if(array[i] == array[result[j]]) {
break;
}
}
//if we didn't manage to find the object the loop finished normally and we need to add this index
if(j == result.size()) {
result.push_back(i);
}
}
return result;
}
#endif