-
Notifications
You must be signed in to change notification settings - Fork 0
/
Day-20_Kth_smallest_element_in_a_BST.py
52 lines (44 loc) · 1.24 KB
/
Day-20_Kth_smallest_element_in_a_BST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
'''
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hide Hint #1
Try to utilize the property of a BST.
Hide Hint #2
Try in-order traversal. (Credits to @chan13)
Hide Hint #3
What if you could modify the BST node's structure?
Hide Hint #4
The optimal runtime complexity is O(height of BST).
'''
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def kthSmallest(self, root, k):
def inorder(root):
return inorder(root.left) + [root.val] + inorder(root.right) if root else []
return inorder(root)[k - 1]