forked from jadore801120/attention-is-all-you-need-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
336 lines (260 loc) · 12.3 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
''' Handling the data io '''
import os
import argparse
import logging
import dill as pickle
import urllib
from tqdm import tqdm
import sys
import codecs
import spacy
import torch
import tarfile
import torchtext.data
import torchtext.datasets
from torchtext.datasets import TranslationDataset
import transformer.Constants as Constants
from learn_bpe import learn_bpe
from apply_bpe import BPE
__author__ = "Yu-Hsiang Huang"
_TRAIN_DATA_SOURCES = [
{"url": "http://data.statmt.org/wmt17/translation-task/" \
"training-parallel-nc-v12.tgz",
"trg": "news-commentary-v12.de-en.en",
"src": "news-commentary-v12.de-en.de"},
#{"url": "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
# "trg": "commoncrawl.de-en.en",
# "src": "commoncrawl.de-en.de"},
#{"url": "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
# "trg": "europarl-v7.de-en.en",
# "src": "europarl-v7.de-en.de"}
]
_VAL_DATA_SOURCES = [
{"url": "http://data.statmt.org/wmt17/translation-task/dev.tgz",
"trg": "newstest2013.en",
"src": "newstest2013.de"}]
_TEST_DATA_SOURCES = [
{"url": "https://storage.googleapis.com/tf-perf-public/" \
"official_transformer/test_data/newstest2014.tgz",
"trg": "newstest2014.en",
"src": "newstest2014.de"}]
class TqdmUpTo(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def file_exist(dir_name, file_name):
for sub_dir, _, files in os.walk(dir_name):
if file_name in files:
return os.path.join(sub_dir, file_name)
return None
def download_and_extract(download_dir, url, src_filename, trg_filename):
src_path = file_exist(download_dir, src_filename)
trg_path = file_exist(download_dir, trg_filename)
if src_path and trg_path:
sys.stderr.write(f"Already downloaded and extracted {url}.\n")
return src_path, trg_path
compressed_file = _download_file(download_dir, url)
sys.stderr.write(f"Extracting {compressed_file}.\n")
with tarfile.open(compressed_file, "r:gz") as corpus_tar:
corpus_tar.extractall(download_dir)
src_path = file_exist(download_dir, src_filename)
trg_path = file_exist(download_dir, trg_filename)
if src_path and trg_path:
return src_path, trg_path
raise OSError(f"Download/extraction failed for url {url} to path {download_dir}")
def _download_file(download_dir, url):
filename = url.split("/")[-1]
if file_exist(download_dir, filename):
sys.stderr.write(f"Already downloaded: {url} (at {filename}).\n")
else:
sys.stderr.write(f"Downloading from {url} to {filename}.\n")
with TqdmUpTo(unit='B', unit_scale=True, miniters=1, desc=filename) as t:
urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
return filename
def get_raw_files(raw_dir, sources):
raw_files = { "src": [], "trg": [], }
for d in sources:
src_file, trg_file = download_and_extract(raw_dir, d["url"], d["src"], d["trg"])
raw_files["src"].append(src_file)
raw_files["trg"].append(trg_file)
return raw_files
def mkdir_if_needed(dir_name):
if not os.path.isdir(dir_name):
os.makedirs(dir_name)
def compile_files(raw_dir, raw_files, prefix):
src_fpath = os.path.join(raw_dir, f"raw-{prefix}.src")
trg_fpath = os.path.join(raw_dir, f"raw-{prefix}.trg")
if os.path.isfile(src_fpath) and os.path.isfile(trg_fpath):
sys.stderr.write(f"Merged files found, skip the merging process.\n")
return src_fpath, trg_fpath
sys.stderr.write(f"Merge files into two files: {src_fpath} and {trg_fpath}.\n")
with open(src_fpath, 'w') as src_outf, open(trg_fpath, 'w') as trg_outf:
for src_inf, trg_inf in zip(raw_files['src'], raw_files['trg']):
sys.stderr.write(f' Input files: \n'\
f' - SRC: {src_inf}, and\n' \
f' - TRG: {trg_inf}.\n')
with open(src_inf, newline='\n') as src_inf, open(trg_inf, newline='\n') as trg_inf:
cntr = 0
for i, line in enumerate(src_inf):
cntr += 1
src_outf.write(line.replace('\r', ' ').strip() + '\n')
for j, line in enumerate(trg_inf):
cntr -= 1
trg_outf.write(line.replace('\r', ' ').strip() + '\n')
assert cntr == 0, 'Number of lines in two files are inconsistent.'
return src_fpath, trg_fpath
def encode_file(bpe, in_file, out_file):
sys.stderr.write(f"Read raw content from {in_file} and \n"\
f"Write encoded content to {out_file}\n")
with codecs.open(in_file, encoding='utf-8') as in_f:
with codecs.open(out_file, 'w', encoding='utf-8') as out_f:
for line in in_f:
out_f.write(bpe.process_line(line))
def encode_files(bpe, src_in_file, trg_in_file, data_dir, prefix):
src_out_file = os.path.join(data_dir, f"{prefix}.src")
trg_out_file = os.path.join(data_dir, f"{prefix}.trg")
if os.path.isfile(src_out_file) and os.path.isfile(trg_out_file):
sys.stderr.write(f"Encoded files found, skip the encoding process ...\n")
encode_file(bpe, src_in_file, src_out_file)
encode_file(bpe, trg_in_file, trg_out_file)
return src_out_file, trg_out_file
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-raw_dir', required=True)
parser.add_argument('-data_dir', required=True)
parser.add_argument('-codes', required=True)
parser.add_argument('-save_data', required=True)
parser.add_argument('-prefix', required=True)
parser.add_argument('-max_len', type=int, default=100)
parser.add_argument('--symbols', '-s', type=int, default=32000, help="Vocabulary size")
parser.add_argument(
'--min-frequency', type=int, default=6, metavar='FREQ',
help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s))')
parser.add_argument('--dict-input', action="store_true",
help="If set, input file is interpreted as a dictionary where each line contains a word-count pair")
parser.add_argument(
'--separator', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument('--total-symbols', '-t', action="store_true")
opt = parser.parse_args()
# Create folder if needed.
mkdir_if_needed(opt.raw_dir)
mkdir_if_needed(opt.data_dir)
# Download and extract raw data.
raw_train = get_raw_files(opt.raw_dir, _TRAIN_DATA_SOURCES)
raw_val = get_raw_files(opt.raw_dir, _VAL_DATA_SOURCES)
raw_test = get_raw_files(opt.raw_dir, _TEST_DATA_SOURCES)
# Merge files into one.
train_src, train_trg = compile_files(opt.raw_dir, raw_train, opt.prefix + '-train')
val_src, val_trg = compile_files(opt.raw_dir, raw_val, opt.prefix + '-val')
test_src, test_trg = compile_files(opt.raw_dir, raw_test, opt.prefix + '-test')
# Build up the code from training files if not exist
opt.codes = os.path.join(opt.data_dir, opt.codes)
if not os.path.isfile(opt.codes):
sys.stderr.write(f"Collect codes from training data and save to {opt.codes}.\n")
learn_bpe(raw_train['src'] + raw_train['trg'], opt.codes, opt.symbols, opt.min_frequency, True)
sys.stderr.write(f"BPE codes prepared.\n")
sys.stderr.write(f"Build up the tokenizer.\n")
with codecs.open(opt.codes, encoding='utf-8') as codes:
bpe = BPE(codes, separator=opt.separator)
sys.stderr.write(f"Encoding ...\n")
encode_files(bpe, train_src, train_trg, opt.data_dir, opt.prefix + '-train')
encode_files(bpe, val_src, val_trg, opt.data_dir, opt.prefix + '-val')
encode_files(bpe, test_src, test_trg, opt.data_dir, opt.prefix + '-test')
sys.stderr.write(f"Done.\n")
field = torchtext.data.Field(
tokenize=str.split,
lower=True,
pad_token=Constants.PAD_WORD,
init_token=Constants.BOS_WORD,
eos_token=Constants.EOS_WORD)
fields = (field, field)
MAX_LEN = opt.max_len
def filter_examples_with_length(x):
return len(vars(x)['src']) <= MAX_LEN and len(vars(x)['trg']) <= MAX_LEN
enc_train_files_prefix = opt.prefix + '-train'
train = TranslationDataset(
fields=fields,
path=os.path.join(opt.data_dir, enc_train_files_prefix),
exts=('.src', '.trg'),
filter_pred=filter_examples_with_length)
from itertools import chain
field.build_vocab(chain(train.src, train.trg), min_freq=2)
data = { 'settings': opt, 'vocab': field, }
opt.save_data = os.path.join(opt.data_dir, opt.save_data)
print('[Info] Dumping the processed data to pickle file', opt.save_data)
pickle.dump(data, open(opt.save_data, 'wb'))
def main_wo_bpe():
'''
Usage: python preprocess.py -lang_src de -lang_trg en -save_data multi30k_de_en.pkl -share_vocab
'''
spacy_support_langs = ['de', 'el', 'en', 'es', 'fr', 'it', 'lt', 'nb', 'nl', 'pt']
parser = argparse.ArgumentParser()
parser.add_argument('-lang_src', required=True, choices=spacy_support_langs)
parser.add_argument('-lang_trg', required=True, choices=spacy_support_langs)
parser.add_argument('-save_data', required=True)
parser.add_argument('-data_src', type=str, default=None)
parser.add_argument('-data_trg', type=str, default=None)
parser.add_argument('-max_len', type=int, default=100)
parser.add_argument('-min_word_count', type=int, default=3)
parser.add_argument('-keep_case', action='store_true')
parser.add_argument('-share_vocab', action='store_true')
#parser.add_argument('-ratio', '--train_valid_test_ratio', type=int, nargs=3, metavar=(8,1,1))
#parser.add_argument('-vocab', default=None)
opt = parser.parse_args()
assert not any([opt.data_src, opt.data_trg]), 'Custom data input is not support now.'
assert not any([opt.data_src, opt.data_trg]) or all([opt.data_src, opt.data_trg])
print(opt)
src_lang_model = spacy.load(opt.lang_src)
trg_lang_model = spacy.load(opt.lang_trg)
def tokenize_src(text):
return [tok.text for tok in src_lang_model.tokenizer(text)]
def tokenize_trg(text):
return [tok.text for tok in trg_lang_model.tokenizer(text)]
SRC = torchtext.data.Field(
tokenize=tokenize_src, lower=not opt.keep_case,
pad_token=Constants.PAD_WORD, init_token=Constants.BOS_WORD, eos_token=Constants.EOS_WORD)
TRG = torchtext.data.Field(
tokenize=tokenize_trg, lower=not opt.keep_case,
pad_token=Constants.PAD_WORD, init_token=Constants.BOS_WORD, eos_token=Constants.EOS_WORD)
MAX_LEN = opt.max_len
MIN_FREQ = opt.min_word_count
if not all([opt.data_src, opt.data_trg]):
assert {opt.lang_src, opt.lang_trg} == {'de', 'en'}
else:
# Pack custom txt file into example datasets
raise NotImplementedError
def filter_examples_with_length(x):
return len(vars(x)['src']) <= MAX_LEN and len(vars(x)['trg']) <= MAX_LEN
train, val, test = torchtext.datasets.Multi30k.splits(
exts = ('.' + opt.lang_src, '.' + opt.lang_trg),
fields = (SRC, TRG),
filter_pred=filter_examples_with_length)
SRC.build_vocab(train.src, min_freq=MIN_FREQ)
print('[Info] Get source language vocabulary size:', len(SRC.vocab))
TRG.build_vocab(train.trg, min_freq=MIN_FREQ)
print('[Info] Get target language vocabulary size:', len(TRG.vocab))
if opt.share_vocab:
print('[Info] Merging two vocabulary ...')
for w, _ in SRC.vocab.stoi.items():
# TODO: Also update the `freq`, although it is not likely to be used.
if w not in TRG.vocab.stoi:
TRG.vocab.stoi[w] = len(TRG.vocab.stoi)
TRG.vocab.itos = [None] * len(TRG.vocab.stoi)
for w, i in TRG.vocab.stoi.items():
TRG.vocab.itos[i] = w
SRC.vocab.stoi = TRG.vocab.stoi
SRC.vocab.itos = TRG.vocab.itos
print('[Info] Get merged vocabulary size:', len(TRG.vocab))
data = {
'settings': opt,
'vocab': {'src': SRC, 'trg': TRG},
'train': train.examples,
'valid': val.examples,
'test': test.examples}
print('[Info] Dumping the processed data to pickle file', opt.save_data)
pickle.dump(data, open(opt.save_data, 'wb'))
if __name__ == '__main__':
main_wo_bpe()
#main()