-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathconvert_npy_to_hdf5.py
53 lines (37 loc) · 1.57 KB
/
convert_npy_to_hdf5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import h5py
import numpy as np
def append_to_dataset(f, dataset, arr):
f[dataset].resize(f[dataset].shape[0] + len(arr), axis=0)
f[dataset][-len(arr):] = arr
print(f'Shape of {dataset}: {f[dataset].shape}')
max_batch = int(input('Enter max batch number: '))
for i in range(1, max_batch + 1):
data = np.load(f'data\\training_data_{i}.npy', allow_pickle=True)
screen, minimap, choice = [], [], []
for x, y, z in data:
screen.append(x)
minimap.append(y)
choice.append(z)
screen = np.array(screen)
minimap = np.array(minimap).reshape(-1, 50, 50, 1)
choice = np.array(choice)
del data
print(f'\nBatch {i}')
print(screen.shape)
print(minimap.shape)
print(choice.shape)
if not os.path.exists('data\\raw_data.hdf5'):
with h5py.File('data\\raw_data.hdf5', 'w') as f:
f.create_dataset('ScreenDataset', data=screen, dtype=np.float32,
maxshape=(None, 80, 200, 3), compression='lzf')
f.create_dataset('MinimapDataset', data=minimap, dtype=np.float32,
maxshape=(None, 50, 50, 1), compression='lzf')
f.create_dataset('ChoiceDataset', data=choice, dtype=np.float32,
maxshape=(None, 3), compression='lzf')
else:
with h5py.File('data\\raw_data.hdf5', 'a') as f:
append_to_dataset(f, 'ScreenDataset', screen)
append_to_dataset(f, 'MinimapDataset', minimap)
append_to_dataset(f, 'ChoiceDataset', choice)
del screen, minimap, choice