-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathget_data.py
109 lines (87 loc) · 3.16 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import cv2
import time
from grabscreen import grab_screen
from getkeys import key_check
from countdown import CountDown
import os
import psutil
'''
Run this script to get training data. The script captures the frame image of
the main screen and the mini map, along with the button you press for that corresponding frame,
i.e., whether you drive straight, left, or right.
Since numpy arrays can become huge files, it's best to collect your data in
batches. If the length of data becomes greater than 100k (or until the script
takes a lot of time to save), start a new batch.
'''
def keys_to_output(keys):
'''
One hot encodes our label. I use 'wasd' to drive my car. Therefore, when I
press 'a', it means I go left, and if I press 'd', I go right.
One-Hot Encoding of labels:
forward = [0, 1, 0]
left = [1, 0, 0]
right = [0, 0, 1]
'''
if 'A' in keys:
output = [1, 0, 0]
elif 'D' in keys:
output = [0, 0, 1]
else:
output = [0, 1, 0]
return output
def main():
CountDown(5)
if os.path.isfile(file_name):
print('Existing Training Data:' + str(len(training_data)))
print('Capturing Data!')
else:
print('Capturing Data Freshly!')
paused = False
while True:
if not paused:
screen = grab_screen(region=(270, 250, 650, 450))
minimap = grab_screen(region=(100, 390, 230, 490))
screen = cv2.resize(screen, (200, 80))
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
minimap = cv2.resize(minimap, (50, 50))
minimap = cv2.cvtColor(minimap, cv2.COLOR_BGR2GRAY)
keys = key_check()
output = keys_to_output(keys)
training_data.append([screen, minimap, output])
# prints the size of the object every often so that RAM doesn't filled up
# saves the training data file every 1000 frames collected
if len(training_data) % 1000 == 0:
print('Saving data...')
np.save(file_name, training_data)
print(f'Saved {file_name} successfully!')
print(f'System Memory Usage: {psutil.virtual_memory().percent} %')
print(f'New Training Data: {len(training_data)} frames')
print('-' * 80)
keys = key_check()
'''
you can press 'e' while in game to pause/unpause the script from
capturing data.
'''
if 'E' in keys:
if paused:
paused = False
print('Unpaused!')
time.sleep(1)
print('Capturing Data!')
else:
paused = True
print('Paused!')
time.sleep(1)
if not os.path.exists('data'):
os.makedirs('data')
# enter batch number(start from 1 and go on as you wish)
n = int(input('Enter the batch number: '))
file_name = 'data\\training_data_{}.npy'.format(n)
if os.path.isfile(file_name):
print('File exists, loading previous data!')
training_data = list(np.load(file_name, allow_pickle=True))
else:
print('File does not exist, starting fresh!')
training_data = []
main()