-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
191 lines (132 loc) · 7.69 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import pandas as pd
import time
import logging
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
from transformers import XLMRobertaConfig, XLMRobertaModel, XLMRobertaTokenizer, AdamW, get_cosine_schedule_with_warmup
from utils import set_seed
class MMRegressor(nn.Module):
def __init__(self, model_path):
super(MMRegressor, self).__init__()
self.config = XLMRobertaConfig.from_pretrained(model_path)
self.reg_model = XLMRobertaModel.from_pretrained(model_path)
self.fc1 = nn.Linear(self.config.hidden_size, 512)
self.fc2 = nn.Linear(512, 7)
self.activation = nn.GELU()
def forward(self, input_ids, attention_mask):
output1 = self.reg_model(input_ids, attention_mask)[1]
logits1 = self.fc2(self.activation(self.fc1(output1)))
output2 = self.reg_model(input_ids, attention_mask)[1]
logits2 = self.fc2(self.activation(self.fc1(output2)))
return logits1, logits2
class Reg_FT_Configer():
def __init__(self, params_dict: dict):
super().__init__()
self.learning_rate = params_dict['learning_rate']
self.epoch =params_dict['epoch']
self.gradient_acc = params_dict['gradient_acc']
self.batch_size = params_dict['batch_size']
self.max_len = params_dict['max_len']
self.model_save_path = params_dict['model_save_path']
self.warmup_rate = params_dict['warmup_rate']
self.weight_decay = params_dict['weight_decay']
self.model_pretrain_dir = params_dict['model_pretrain_dir']
self.training_set_path = params_dict['training_set_path']
self.testing_set_path = params_dict['testing_set_path']
self.seed = params_dict['seed']
# weights for the 7 sub-dimensions
self.dims_weights = [params_dict['overall_weight'] if i == 4 else (1-params_dict['overall_weight'])/6 for i in range(7)]
# weights for forward loss and adapted R-Drop loss
self.losses_weights = {
'forward_weight': (1-params_dict['rdrop_weight'])/2,
'rdrop_weight': params_dict['rdrop_weight']
}
class Reg_Trainer():
def __init__(self, config: Reg_FT_Configer):
super().__init__()
self.config = config
self.device = torch.device("cuda")
self.tokenizer = XLMRobertaTokenizer.from_pretrained(self.config.model_pretrain_dir)
set_seed(self.config.seed)
def dataset(self, data_path):
input_ids, attention_masks, labels = [], [], []
for idx, row in pd.read_csv(data_path).iterrows():
text1, text2 = row['text1'], row['text2']
encode_dict = self.tokenizer.__call__(text1,text2,
max_length=self.config.max_len,
padding='max_length',
truncation=True,
add_special_tokens=True
)
input_ids.append(encode_dict['input_ids'])
attention_masks.append(encode_dict['attention_mask'])
labels.append([float(x) for x in [row['Geography'],row['Entities'],row['Time'],row['Narrative'],row['Overall'],row['Style'],row['Tone']]])
return torch.tensor(input_ids), torch.tensor(attention_masks), torch.tensor(labels)
def data_loader(self, input_ids, attention_masks, labels):
data = TensorDataset(input_ids, attention_masks, labels)
loader = DataLoader(data, batch_size=self.config.batch_size, shuffle=True, drop_last=True)
return loader
def predict(self, model, data_loader):
model.eval()
test_pred, test_true = [], []
with torch.no_grad():
for idx, (ids, att, y) in enumerate(data_loader):
y_pred = model(ids.to(self.device), att.to(self.device))
y_pred = torch.squeeze(torch.add(torch.mul(y_pred[0], 0.5), torch.mul(y_pred[1], 0.5))).detach().cpu().numpy().tolist()
y = y.squeeze().cpu().numpy().tolist()
test_true.extend([x[4] for x in y])
test_pred.extend([x[4] for x in y_pred])
return test_true, test_pred
def calculate_weighted_loss(self, y_pred, y, criterion):
loss = 0.0
for i in range(7):
y_pred_i, y_i = y_pred[:, i], y[:, i]
loss += criterion(y_pred_i, y_i) * self.config.dims_weights[i]
return loss
def train(self, model, train_loader, valid_loader, optimizer, schedule):
best_pearson = 0.0
criterion = nn.MSELoss()
model.train()
for i in range(self.config.epoch):
start_time = time.time()
train_loss_sum = 0.0
logging.info(f"—————————————————————— Epoch {i+1} ——————————————————————")
for idx, (ids, att, y) in enumerate(train_loader):
ids, att, y = ids.to(self.device), att.to(self.device), y.to(self.device)
y_pred1, y_pred2 = model(ids, att)
y_pred1, y_pred2, y = torch.squeeze(y_pred1), torch.squeeze(y_pred2), torch.squeeze(y)
loss1 = self.calculate_weighted_loss(y_pred1, y, criterion) * self.config.losses_weights['forward_weight']
loss2 = self.calculate_weighted_loss(y_pred2, y, criterion) * self.config.losses_weights['forward_weight']
loss_r = self.calculate_weighted_loss(y_pred1, y_pred2, criterion) * self.config.losses_weights['rdrop_weight']
loss = (loss1 + loss2 + loss_r) / self.config.gradient_acc
optimizer.zero_grad()
loss.backward()
optimizer.step()
schedule.step()
train_loss_sum += loss.item()
if (idx+1) % (len(train_loader) // 10) == 0:
logging.info("Epoch {:02d} | Step {:03d}/{:03d} | Loss {:.4f} | Time {:.2f}".format(i+1, idx+1, len(train_loader), train_loss_sum/(idx+1), time.time()-start_time))
logging.info("Start evaluating!")
dev_true, dev_pred = self.predict(model, valid_loader)
cur_pearson = np.corrcoef(dev_true, dev_pred)[0][1]
if cur_pearson > best_pearson:
best_pearson = cur_pearson
torch.save(model.state_dict(), self.config.model_save_path)
logging.info("Current dev pearson is {:.4f}, best pearson is {:.4f}".format(cur_pearson, best_pearson))
logging.info("Time costed : {}s \n".format(round(time.time() - start_time, 3)))
def run_finetune(self):
train_loader = self.data_loader(*self.dataset(self.config.training_set_path))
dev_loader = self.data_loader(*self.dataset(self.config.testing_set_path))
model = MMRegressor(self.config.model_pretrain_dir).to(self.device)
for param in model.parameters():
param.requires_grad = True
total_steps = len(train_loader) * self.config.epoch
optimizer = AdamW(params=model.parameters(),
lr=self.config.learning_rate,
weight_decay=self.config.weight_decay)
schedule = get_cosine_schedule_with_warmup(optimizer=optimizer,
num_warmup_steps=self.config.warmup_rate*total_steps,
num_training_steps=total_steps)
self.train(model, train_loader, dev_loader, optimizer, schedule)