diff --git a/doc/rst/source/proj-codes.rst_ b/doc/rst/source/proj-codes.rst_ index cceb300a370..6db94499de1 100644 --- a/doc/rst/source/proj-codes.rst_ +++ b/doc/rst/source/proj-codes.rst_ @@ -17,92 +17,92 @@ * - - **-J** (*scale*\|\ *WIDTH*) - - * - :ref:`Lambert azimuthal equal area <-Ja>` + * - :ref:`Lambert azimuthal equal-area projection <-Ja>` - **-Ja**\|\ **A** - |lon0|/|lat0|\ [/\ *horizon*]/\ *scale*\|\ *width* - * - :ref:`Albers conic equal area <-Jb>` + * - :ref:`Albers conic equal-area projection <-Jb>` - **-Jb**\|\ **B** - |lon0|/|lat0|/|lat1|/|lat2|/\ *scale*\|\ *width* - * - :ref:`Cassini cylindrical <-Jc>` + * - :ref:`Cassini projection <-Jc>` - **-Jc**\|\ **C** - |lon0|/|lat0|/\ *scale*\|\ *width* - * - :ref:`Cylindrical stereographic <-Jcyl_stere>` + * - :ref:`Cylindrical stereographic projection <-Jcyl_stere>` - **-Jcyl_stere**\|\ **Cyc_stere** - [|lon0|\ [/|lat0|]/]\ *scale*\|\ *width* - * - :ref:`Equidistant conic <-Jd>` + * - :ref:`Equidistant conic projection <-Jd>` - **-Jd**\|\ **D** - |lon0|/|lat0|/|lat1|/|lat2|/\ *scale*\|\ *width* - * - :ref:`Azimuthal equidistant <-Je>` + * - :ref:`Azimuthal equidistant projection <-Je>` - **-Je**\|\ **E** - |lon0|/|lat0|\ [/\ *horizon*]/\ *scale*\|\ *width* - * - :ref:`Azimuthal gnomonic <-Jf>` + * - :ref:`Azimuthal gnomonic projection <-Jf>` - **-Jf**\|\ **F** - |lon0|/|lat0|\ [/\ *horizon*]/\ *scale*\|\ *width* - * - :ref:`Azimuthal orthographic <-Jg>` + * - :ref:`Azimuthal orthographic projection <-Jg>` - **-Jg**\|\ **G** - |lon0|/|lat0|\ [/\ *horizon*]/\ *scale*\|\ *width* - * - :ref:`General perspective <-Jg_pers>` + * - :ref:`General perspective projection <-Jg_pers>` - **-Jg**\|\ **G** - |lon0|/|lat0|\ */*\ *scale*\|\ *width*\ [**+a**\ *azimuth*][**+t**\ *tilt*][**+v**\ *vwidth/vheight*][**+w**\ *twist*][**+z**\ *altitude*\ [**r**\|\ **R**]\|\ **g**] - * - :ref:`Hammer equal area <-Jh>` + * - :ref:`Hammer equal-area projection <-Jh>` - **-Jh**\|\ **H** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Sinusoidal equal area <-Ji>` + * - :ref:`Sinusoidal equal-area projection <-Ji>` - **-Ji**\|\ **I** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Miller cylindrical <-Jj>` + * - :ref:`Miller projection <-Jj>` - **-Jj**\|\ **J** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Eckert IV equal area <-Jk>` + * - :ref:`Eckert IV equal-area projection <-Jk>` - **-Jkf**\|\ **Kf** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Eckert VI equal area <-Jk>` + * - :ref:`Eckert VI equal-area projection <-Jk>` - **-Jks**\|\ **Ks** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Lambert conic conformal <-Jl>` + * - :ref:`Lambert conic conformal projection <-Jl>` - **-Jl**\|\ **L** - |lon0|/|lat0|/|lat1|/|lat2|/\ *scale*\|\ *width* - * - :ref:`Mercator cylindrical <-Jm>` + * - :ref:`Mercator projection <-Jm>` - **-Jm**\|\ **M** - [|lon0|/\ [|lat0|/]]\ *scale*\|\ *width* - * - :ref:`Robinson <-Jn>` + * - :ref:`Robinson projection <-Jn>` - **-Jn**\|\ **N** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Oblique Mercator, 1: origin and azim <-Jo>` + * - :ref:`Oblique Mercator projection, 1: origin and azim <-Jo>` - **-Jo**\|\ **O**\ **a**\|\ **A** - |lon0|/|lat0|/\ *azim*/*scale*\|\ *width*\ [**+v**] - * - :ref:`Oblique Mercator, 2: two points <-Jo>` + * - :ref:`Oblique Mercator projection, 2: two points <-Jo>` - **-Jo**\|\ **O**\ **b**\|\ **B** - |lon0|/|lat0|/|lon1|/|lat1|/\ *scale*\|\ *width*\ [**+v**] - * - :ref:`Oblique Mercator, 3: origin and pole <-Jo>` + * - :ref:`Oblique Mercator projection, 3: origin and pole <-Jo>` - **-Jo**\|\ **O**\ **c**\|\ **C** - |lon0|/|lat0|/|lonp|/|latp|/\ *scale*\|\ *width*\ [**+v**] - * - :ref:`Polar [azimuthal] <-Jp>` (:math:`\theta, r`) (or cylindrical) + * - :ref:`Polar [azimuthal] <-Jp>` (:math:`\theta, r`) (or cylindrical) - **-Jp**\|\ **P** - *scale*\|\ *width*\ [**+a**]\ [**+f**\ [**e**\|\ **p**\|\ *radius*]]\ [**+k**\ *kind*]\ [**+r**\ *offset*][**+t**\ *origin*][**+z**\ [**p**\|\ *radius*]] - * - :ref:`(American) polyconic <-Jpoly>` + * - :ref:`(American) polyconic projection <-Jpoly>` - **-Jpoly**\|\ **Poly** - [|lon0|/\ [|lat0|/]]\ *scale*\|\ *width* - * - :ref:`Equidistant cylindrical <-Jq>` + * - :ref:`Cylindrical equidistant projection <-Jq>` - **-Jq**\|\ **Q** - [|lon0|/\ [|lat0|/]]\ *scale*\|\ *width* - * - :ref:`Winkel Tripel <-Jr>` + * - :ref:`Winkel Tripel projection <-Jr>` - **-Jr**\|\ **R** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`General stereographic <-Js>` + * - :ref:`Stereographic projection <-Js>` - **-Js**\|\ **S** - |lon0|/|lat0|\ [/\ *horizon*]/\ *scale*\|\ *width* - * - :ref:`Transverse Mercator <-Jt>` + * - :ref:`Transverse Mercator projection <-Jt>` - **-Jt**\|\ **T** - |lon0|/\ [|lat0|/]\ *scale*\|\ *width* - * - :ref:`Universal Transverse Mercator (UTM) <-Ju>` + * - :ref:`Universal Transverse Mercator (UTM) projection <-Ju>` - **-Ju**\|\ **U** - *zone*/*scale*\|\ *width* - * - :ref:`Van der Grinten <-Jv>` + * - :ref:`Van der Grinten projection <-Jv>` - **-Jv**\|\ **V** - [|lon0|/]\ *scale*\|\ *width* - * - :ref:`Mollweide <-Jw>` + * - :ref:`Mollweide projection <-Jw>` - **-Jw**\|\ **W** - [|lon0|/]\ *scale*\|\ *width* * - :ref:`Linear <-Jx_linear>`, :ref:`logarithmic <-Jx_log>`, @@ -110,6 +110,6 @@ - **-Jx**\|\ **X** - *xscale*\|\ *width*\ [**l**\|\ **p**\ *power*\|\ **T**\|\ **t**]\ [/\ *yscale*\|\ *height*\ [**l**\|\ **p**\ *power*\|\ **T**\|\ **t**]][**d**] - * - :ref:`Cylindrical equal area <-Jy>` + * - :ref:`Cylindrical equal-area projection <-Jy>` - **-Jy**\|\ **Y** - |lon0|/|lat0|/\ *scale*\|\ *width* diff --git a/doc/rst/source/reference/coordinate-transformations.rst b/doc/rst/source/reference/coordinate-transformations.rst index 92c492e0375..f54e12988cd 100644 --- a/doc/rst/source/reference/coordinate-transformations.rst +++ b/doc/rst/source/reference/coordinate-transformations.rst @@ -20,7 +20,7 @@ Finally, note that while we will specify dimensions in inches (by appending **i* points (**p**) as :ref:`unit ` instead. Cartesian coordinate transformations --------------------------------------------------------------------------------- +------------------------------------ GMT Cartesian coordinate transformations come in three flavors: @@ -50,7 +50,7 @@ operates on or creates table data: .. _-Jx_linear: Linear coordinate transformation -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are in fact three different uses of the Cartesian linear transformation, each associated with specific command line options. The different manifestations result from specific properties of three kinds of data: @@ -190,7 +190,7 @@ A simple plot of a school week calendar can be made as follows: .. _-Jx_log: Logarithmic coordinate transformation -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -229,7 +229,7 @@ A plot in which the *x*-axis is logarithmic (the *y*-axis remains linear, i.e., .. _-Jx_power: Power (exponential) coordinate transformation -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -267,7 +267,7 @@ Since :math:`q = 1` we do not need to specify **p**\ 1 since it is identical to .. _-Jp: Polar coordinate transformations --------------------------------------------------------------------------------- +-------------------------------- **Syntax** diff --git a/doc/rst/source/reference/map-projections.rst b/doc/rst/source/reference/map-projections.rst index 1eaa29bafc3..a54b9c1eb66 100644 --- a/doc/rst/source/reference/map-projections.rst +++ b/doc/rst/source/reference/map-projections.rst @@ -50,7 +50,7 @@ Conic projections .. _-Jb: Albers conic equal-area projection (**-Jb** **-JB**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -93,7 +93,7 @@ generate the map below is therefore given by: .. _-Jd: Equidistant conic projection (**-Jd** **-JD**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -128,7 +128,7 @@ map of Cuba: .. _-Jl: Lambert conic conformal projection (**-Jl** **-JL**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -173,7 +173,7 @@ latitudes 30.5°N and 47.5°N of 0.5–1%. Some areas, like Florida, experience .. _-Jpoly: (American) polyconic projection (**-Jpoly** **-JPoly**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -218,8 +218,8 @@ Azimuthal projections .. _-Ja: -Lambert Azimuthal Equal-Area (**-Ja** **-JA**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Lambert azimuthal equal-area projection (**-Ja** **-JA**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -308,8 +308,8 @@ stereonet can be obtained by using the stereographic projection .. _-Js: -Stereographic Equal-Angle (**-Js** **-JS**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Stereographic equal-angle projection (**-Js** **-JS**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -340,8 +340,8 @@ We will look at two different types of maps. Multiple types of maps can be made with this projection depending on how the region is specified. We will give examples in the next three subsections. -Polar Stereographic Map -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Polar stereographic map +^^^^^^^^^^^^^^^^^^^^^^^ In our first example we will let the projection center be at the north pole. This means we have a polar stereographic projection and the map @@ -396,12 +396,12 @@ hemispheric maps. Our example shows Australia using a projection pole at By choosing 0/0 as the pole, we obtain the conformal stereonet presented -next to its equal-area cousin in the Section `Lambert Azimuthal Equal-Area (-Ja -JA)`_ on the Lambert azimuthal equal-area projection (Figure :ref:`Stereonets `). +next to its equal-area cousin in the Section `Lambert azimuthal equal-area projection (-Ja -JA)`_ on the Lambert azimuthal projection (Figure :ref:`Stereonets `). .. _-Jg_pers: Perspective projection (**-Jg** **-JG**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -451,7 +451,7 @@ following :doc:`/coast` command (*lon0*\ =4; *lat0*\ =52; *altitude*\ =230 km; * .. _-Jg: Orthographic projection (**-Jg** **-JG**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -489,8 +489,8 @@ command: .. _-Je: -Azimuthal Equidistant projection (**-Je** **-JE**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Azimuthal equidistant projection (**-Je** **-JE**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -529,7 +529,7 @@ perimeter: .. _-Jf: Gnomonic projection (**-Jf** **-JF**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -578,7 +578,7 @@ Each have a different way of spacing the meridians and parallels to obtain certa .. _-Jm: Mercator projection (**-Jm** **-JM**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -628,7 +628,7 @@ example, specify the region with **-R**-180/180/-70/70 to obtain a map centered .. _-Jt: Transverse Mercator projection (**-Jt** **-JT**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -686,7 +686,7 @@ latitudes in the regular Mercator projection and must therefore be less than 90 .. _-Ju: Universal Transverse Mercator (UTM) projection (**-Ju** **-JU**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -731,7 +731,7 @@ formulae instead. .. _-Jo: Oblique Mercator projection (**-Jo** **-JO**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Option 1 Syntax** @@ -847,7 +847,7 @@ to align the oblique Equator with the vertical, positive *y*-axis instead. This .. _-Jc: Cassini cylindrical projection (**-Jc** **-JC**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -888,7 +888,7 @@ As with the previous projections, the user can choose between a rectangular boun .. _-Jq: Cylindrical equidistant projection (**-Jq** **-JQ**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -941,8 +941,8 @@ A world map centered on the dateline using this projection can be obtained as fo .. _-Jy: -Cylindrical equal-area projections (**-Jy** **-JY**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Cylindrical equal-area projection (**-Jy** **-JY**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -959,7 +959,7 @@ Cylindrical equal-area projections (**-Jy** **-JY**) **Description** This cylindrical projection is actually several projections, depending on what latitude is selected as the standard -parallel. However, they are all equal area and hence non-conformal. All meridians and parallels are straight lines. +parallel. However, they are all equal-area and hence non-conformal. All meridians and parallels are straight lines. While you may choose any value for the standard parallel and obtain your own personal projection, there are seven choices of standard parallels that result in known (or named) projections. These are listed in Table :ref:`JY `. @@ -1002,8 +1002,8 @@ As one can see there is considerable distortion at high latitudes since the pole .. _-Jj: -Miller Cylindrical projection (**-Jj** **-JJ**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Miller cylindrical projection (**-Jj** **-JJ**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -1041,8 +1041,8 @@ can be obtained as follows: .. _-Jcyl_stere: -Cylindrical stereographic projections (**-Jcyl_stere** **-JCyl_stere**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Cylindrical stereographic projection (**-Jcyl_stere** **-JCyl_stere**) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -1111,7 +1111,7 @@ range of the plot, specified by the (**-R**) option. .. _-Jh: Hammer projection (**-Jh** **-JH**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -1144,7 +1144,7 @@ A view of the Pacific ocean using the Dateline as central meridian can be genera .. _-Jw: Mollweide projection (**-Jw** **-JW**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -1178,7 +1178,7 @@ An example centered on Greenwich can be generated thus: .. _-Jr: Winkel Tripel projection (**-Jr** **-JR**) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Syntax** @@ -1220,7 +1220,7 @@ Centered on Greenwich, the example in Figure :ref:`Winkel Tripel projection