-
Notifications
You must be signed in to change notification settings - Fork 219
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Wrap GMT's standard data type GMT_GRID for grids #2398
Changes from 10 commits
e2433f6
daad3af
cd2c5d7
c5435b0
ddb7a81
0b81cbb
500568d
6b38734
ab9a838
5735122
01664f8
863ac43
2e51ba7
b3ce412
97c3cc9
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||
---|---|---|---|---|---|---|---|---|
|
@@ -3,7 +3,197 @@ | |||||||
""" | ||||||||
|
||||||||
import ctypes as ctp | ||||||||
from typing import ClassVar | ||||||||
|
||||||||
import numpy as np | ||||||||
import xarray as xr | ||||||||
from pygmt.datatypes.header import _GMT_GRID_HEADER, gmt_grdfloat | ||||||||
|
||||||||
|
||||||||
class _GMT_GRID(ctp.Structure): # noqa: N801 | ||||||||
pass | ||||||||
""" | ||||||||
GMT grid structure for holding a grid and its header. | ||||||||
|
||||||||
The class is only meant for internal use and is not exposed to users. See the GMT | ||||||||
seisman marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
source code gmt_resources.h for the original C structure definitions. | ||||||||
|
||||||||
Examples | ||||||||
-------- | ||||||||
>>> from pygmt.clib import Session | ||||||||
>>> with Session() as lib: | ||||||||
... with lib.virtualfile_out(kind="grid") as voutgrd: | ||||||||
... lib.call_module("read", f"@static_earth_relief.nc {voutgrd} -Tg") | ||||||||
... # Read the grid from the virtual file | ||||||||
... grid = lib.read_virtualfile(voutgrd, kind="grid").contents | ||||||||
... # The grid header | ||||||||
... header = grid.header.contents | ||||||||
... # Access the header properties | ||||||||
... print(header.n_rows, header.n_columns, header.registration) | ||||||||
... print(header.wesn[:], header.z_min, header.z_max, header.inc[:]) | ||||||||
... print(header.z_scale_factor, header.z_add_offset) | ||||||||
... print(header.x_units, header.y_units, header.z_units) | ||||||||
... print(header.title) | ||||||||
... print(header.command) | ||||||||
... print(header.remark) | ||||||||
... print(header.nm, header.size, header.complex_mode) | ||||||||
... print(header.type, header.n_bands, header.mx, header.my) | ||||||||
... print(header.pad[:]) | ||||||||
... print(header.mem_layout, header.nan_value, header.xy_off) | ||||||||
... # The x and y coordinates | ||||||||
... print(grid.x[: header.n_columns]) | ||||||||
... print(grid.y[: header.n_rows]) | ||||||||
... # The data array (with paddings) | ||||||||
... data = np.reshape( | ||||||||
... grid.data[: header.mx * header.my], (header.my, header.mx) | ||||||||
... ) | ||||||||
... # The data array (without paddings) | ||||||||
... pad = header.pad[:] | ||||||||
... data = data[pad[2] : header.my - pad[3], pad[0] : header.mx - pad[1]] | ||||||||
... print(data) | ||||||||
14 8 1 | ||||||||
[-55.0, -47.0, -24.0, -10.0] 190.0 981.0 [1.0, 1.0] | ||||||||
1.0 0.0 | ||||||||
b'longitude [degrees_east]' b'latitude [degrees_north]' b'elevation (m)' | ||||||||
b'Produced by grdcut' | ||||||||
b'grdcut @earth_relief_01d_p -R-55/-47/-24/-10 -Gstatic_earth_relief.nc' | ||||||||
b'Reduced by Gaussian Cartesian filtering (111.2 km fullwidth) from ...' | ||||||||
112 216 0 | ||||||||
18 1 12 18 | ||||||||
[2, 2, 2, 2] | ||||||||
b'' nan 0.5 | ||||||||
[-54.5, -53.5, -52.5, -51.5, -50.5, -49.5, -48.5, -47.5] | ||||||||
[-10.5, -11.5, -12.5, -13.5, -14.5, -15.5, ..., -22.5, -23.5] | ||||||||
[[347.5 331.5 309. 282. 190. 208. 299.5 348. ] | ||||||||
[349. 313. 325.5 247. 191. 225. 260. 452.5] | ||||||||
[345.5 320. 335. 292. 207.5 247. 325. 346.5] | ||||||||
[450.5 395.5 366. 248. 250. 354.5 550. 797.5] | ||||||||
[494.5 488.5 357. 254.5 286. 484.5 653.5 930. ] | ||||||||
[601. 526.5 535. 299. 398.5 645. 797.5 964. ] | ||||||||
[308. 595.5 555.5 556. 580. 770. 927. 920. ] | ||||||||
[521.5 682.5 796. 886. 571.5 638.5 739.5 881.5] | ||||||||
[310. 521.5 757. 570.5 538.5 524. 686.5 794. ] | ||||||||
[561.5 539. 446.5 481.5 439.5 553. 726.5 981. ] | ||||||||
[557. 435. 385.5 345.5 413.5 496. 519.5 833.5] | ||||||||
[373. 367.5 349. 352.5 419.5 428. 570. 667.5] | ||||||||
[383. 284.5 344.5 394. 491. 556.5 578.5 618.5] | ||||||||
[347.5 344.5 386. 640.5 617. 579. 646.5 671. ]] | ||||||||
""" | ||||||||
|
||||||||
_fields_: ClassVar = [ | ||||||||
# Pointer to full GMT header for grid | ||||||||
("header", ctp.POINTER(_GMT_GRID_HEADER)), | ||||||||
# Pointer to grid data | ||||||||
("data", ctp.POINTER(gmt_grdfloat)), | ||||||||
# Pointer to x coordinate vector | ||||||||
("x", ctp.POINTER(ctp.c_double)), | ||||||||
# Pointer to y coordinate vector | ||||||||
("y", ctp.POINTER(ctp.c_double)), | ||||||||
# Low-level information for GMT use only | ||||||||
("hidden", ctp.c_void_p), | ||||||||
] | ||||||||
|
||||||||
def to_dataarray(self) -> xr.DataArray: | ||||||||
""" | ||||||||
Convert a _GMT_GRID object to a :class:`xarray.DataArray` object. | ||||||||
|
||||||||
Returns | ||||||||
------- | ||||||||
dataarray | ||||||||
A :class:`xr.DataArray` object. | ||||||||
|
||||||||
Examples | ||||||||
-------- | ||||||||
>>> from pygmt.clib import Session | ||||||||
>>> with Session() as lib: | ||||||||
... with lib.virtualfile_out(kind="grid") as voutgrd: | ||||||||
... lib.call_module("read", f"@static_earth_relief.nc {voutgrd} -Tg") | ||||||||
... # Read the grid from the virtual file | ||||||||
... grid = lib.read_virtualfile(voutgrd, kind="grid") | ||||||||
... # Convert to xarray.DataArray and use it later | ||||||||
... da = grid.contents.to_dataarray() | ||||||||
>>> da # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS | ||||||||
<xarray.DataArray 'z' (lat: 14, lon: 8)>... | ||||||||
array([[347.5, 344.5, 386. , 640.5, 617. , 579. , 646.5, 671. ], | ||||||||
[383. , 284.5, 344.5, 394. , 491. , 556.5, 578.5, 618.5], | ||||||||
[373. , 367.5, 349. , 352.5, 419.5, 428. , 570. , 667.5], | ||||||||
[557. , 435. , 385.5, 345.5, 413.5, 496. , 519.5, 833.5], | ||||||||
[561.5, 539. , 446.5, 481.5, 439.5, 553. , 726.5, 981. ], | ||||||||
[310. , 521.5, 757. , 570.5, 538.5, 524. , 686.5, 794. ], | ||||||||
[521.5, 682.5, 796. , 886. , 571.5, 638.5, 739.5, 881.5], | ||||||||
[308. , 595.5, 555.5, 556. , 580. , 770. , 927. , 920. ], | ||||||||
[601. , 526.5, 535. , 299. , 398.5, 645. , 797.5, 964. ], | ||||||||
[494.5, 488.5, 357. , 254.5, 286. , 484.5, 653.5, 930. ], | ||||||||
[450.5, 395.5, 366. , 248. , 250. , 354.5, 550. , 797.5], | ||||||||
[345.5, 320. , 335. , 292. , 207.5, 247. , 325. , 346.5], | ||||||||
[349. , 313. , 325.5, 247. , 191. , 225. , 260. , 452.5], | ||||||||
[347.5, 331.5, 309. , 282. , 190. , 208. , 299.5, 348. ]]) | ||||||||
Coordinates: | ||||||||
* lat (lat) float64... -23.5 -22.5 -21.5 -20.5 ... -12.5 -11.5 -10.5 | ||||||||
* lon (lon) float64... -54.5 -53.5 -52.5 -51.5 -50.5 -49.5 -48.5 -47.5 | ||||||||
Attributes: | ||||||||
Conventions: CF-1.7 | ||||||||
title: Produced by grdcut | ||||||||
history: grdcut @earth_relief_01d_p -R-55/-47/-24/-10 -Gstatic_ea... | ||||||||
description: Reduced by Gaussian Cartesian filtering (111.2 km fullwi... | ||||||||
long_name: elevation (m) | ||||||||
actual_range: [190. 981.] | ||||||||
>>> da.coords["lon"] # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS | ||||||||
<xarray.DataArray 'lon' (lon: 8)>... | ||||||||
array([-54.5, -53.5, -52.5, -51.5, -50.5, -49.5, -48.5, -47.5]) | ||||||||
Coordinates: | ||||||||
* lon (lon) float64... -54.5 -53.5 -52.5 -51.5 -50.5 -49.5 -48.5 -47.5 | ||||||||
Attributes: | ||||||||
long_name: longitude | ||||||||
units: degrees_east | ||||||||
standard_name: longitude | ||||||||
axis: X | ||||||||
actual_range: [-55. -47.] | ||||||||
>>> da.coords["lat"] # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS | ||||||||
<xarray.DataArray 'lat' (lat: 14)>... | ||||||||
array([-23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, | ||||||||
-13.5, -12.5, -11.5, -10.5]) | ||||||||
Coordinates: | ||||||||
* lat (lat) float64... -23.5 -22.5 -21.5 -20.5 ... -12.5 -11.5 -10.5 | ||||||||
Attributes: | ||||||||
long_name: latitude | ||||||||
units: degrees_north | ||||||||
standard_name: latitude | ||||||||
axis: Y | ||||||||
actual_range: [-24. -10.] | ||||||||
>>> da.gmt.registration, da.gmt.gtype | ||||||||
(1, 1) | ||||||||
""" | ||||||||
# The grid header | ||||||||
header = self.header.contents | ||||||||
|
||||||||
# Get dimensions and their attributes from the header. | ||||||||
dims, dim_attrs = header.dims, header.dim_attrs | ||||||||
# The coordinates, given as a tuple of the form (dims, data, attrs) | ||||||||
coords = [ | ||||||||
(dims[0], self.y[: header.n_rows], dim_attrs[0]), | ||||||||
(dims[1], self.x[: header.n_columns], dim_attrs[1]), | ||||||||
] | ||||||||
|
||||||||
# The data array without paddings | ||||||||
pad = header.pad[:] | ||||||||
data = np.reshape(self.data[: header.mx * header.my], (header.my, header.mx))[ | ||||||||
pad[2] : header.my - pad[3], pad[0] : header.mx - pad[1] | ||||||||
] | ||||||||
|
||||||||
# Create the xarray.DataArray object | ||||||||
grid = xr.DataArray( | ||||||||
data, coords=coords, name=header.name, attrs=header.data_attrs | ||||||||
) | ||||||||
|
||||||||
# Flip the coordinates and data if necessary so that coordinates are ascending. | ||||||||
# `grid.sortby(list(grid.dims))` sometimes causes crashes. | ||||||||
# The solution comes from https://github.com/pydata/xarray/discussions/6695. | ||||||||
for dim in grid.dims: | ||||||||
if grid[dim][0] > grid[dim][1]: | ||||||||
grid = grid.isel({dim: slice(None, None, -1)}) | ||||||||
Comment on lines
+188
to
+193
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you elaborate a bit on this part? Sort ascending is probably needed for the x (longitude) dimension. But for the y (latitude) dimension, it is quite common to sort in descending order (y going from North Pole +90 to South Pole -90). What is the typical sorting order returned from GMT? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think GMT requires ascending order for longitude/latitude. Similar codes are already used at (The codes below use pygmt/pygmt/clib/conversion.py Lines 122 to 124 in 70d666e
I tried to find some evidence from the GMT source codes but failed because the codes are so complicated. Perhaps the most straightforward evidence is from following lines (https://github.com/GenericMappingTools/gmt/blob/e493ccc220d9e997abb655cb461142ed2e7cc777/src/gmt_nc.c#L754):
in which There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ok, from what I can tell, this means GMT expects grids with coordinates sorted in ascending order. But here in the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Hmmm, your comments make more sense. I tried to remove these sorting codes locally. Here is the output: In [1]: import xarray as xr
In [2]: from pygmt import which
In [3]: path = which("@earth_relief_01d_g", download="a")
In [4]: grid1 = xr.load_dataarray(path)
In [6]: from pygmt.clib import Session
...: with Session() as lib:
...: with lib.virtualfile_out(kind="grid") as voutgrd:
...: lib.call_module("read", f"{path} {voutgrd} -Tg")
...: grid = lib.read_virtualfile(voutgrd, kind="grid")
...: grid2 = grid.contents.to_dataarray()
...:
In [7]: grid1
Out[7]:
<xarray.DataArray 'z' (lat: 181, lon: 361)> Size: 523kB
array([[ 2865. , 2865. , 2865. , ..., 2865. , 2865. , 2865. ],
[ 3088. , 3087.5, 3087. , ..., 3088.5, 3088. , 3088. ],
[ 3100.5, 3100.5, 3101. , ..., 3101.5, 3101. , 3100.5],
...,
[-3745.5, -3729. , -3722.5, ..., -3734. , -3742. , -3745.5],
[-2940. , -2945. , -2951. , ..., -2895.5, -2921.5, -2940. ],
[-3861. , -3861. , -3861. , ..., -3861. , -3861. , -3861. ]])
Coordinates:
* lon (lon) float64 3kB -180.0 -179.0 -178.0 -177.0 ... 178.0 179.0 180.0
* lat (lat) float64 1kB -90.0 -89.0 -88.0 -87.0 ... 87.0 88.0 89.0 90.0
Attributes:
actual_range: [-7174. 5350.]
long_name: elevation (m)
In [8]: grid2
Out[8]:
<xarray.DataArray 'z' (lat: 181, lon: 361)> Size: 523kB
array([[-3861. , -3861. , -3861. , ..., -3861. , -3861. , -3861. ],
[-2940. , -2945. , -2951. , ..., -2895.5, -2921.5, -2940. ],
[-3745.5, -3729. , -3722.5, ..., -3734. , -3742. , -3745.5],
...,
[ 3100.5, 3100.5, 3101. , ..., 3101.5, 3101. , 3100.5],
[ 3088. , 3087.5, 3087. , ..., 3088.5, 3088. , 3088. ],
[ 2865. , 2865. , 2865. , ..., 2865. , 2865. , 2865. ]])
Coordinates:
* lat (lat) float64 1kB 90.0 89.0 88.0 87.0 ... -87.0 -88.0 -89.0 -90.0
* lon (lon) float64 3kB -180.0 -179.0 -178.0 -177.0 ... 178.0 179.0 180.0
Attributes:
Conventions: CF-1.7
title: SRTM15 Earth Relief v2.5.5 at 01 arc degree
history:
description: Reduced by Gaussian Cartesian filtering (314.5 km fullwidt...
long_name: elevation (m)
actual_range: [-7174. 5350.] It seems There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Hmm yeah, I don't think we need to match the behaviour of import pygmt
import rioxarray
import xarray as xr
path = pygmt.which("@earth_relief_01d_g", download="a")
grid2 = rioxarray.open_rasterio(path)
print(grid2)
# <xarray.DataArray 'z' (band: 1, y: 181, x: 361)> Size: 131kB
# [65341 values with dtype=int16]
# Coordinates:
# * band (band) int64 8B 1
# * x (x) float64 3kB -180.0 -179.0 -178.0 ... 178.0 179.0 180.0
# * y (y) float64 1kB 90.0 89.0 88.0 87.0 ... -87.0 -88.0 -89.0 -90.0
# spatial_ref int64 8B 0
# Attributes: (12/20)
# lat#actual_range: [-90. 90.]
# lat#axis: Y
# lat#long_name: latitude
# lat#standard_name: latitude
# lat#units: degrees_north
# lon#actual_range: [-180. 180.]
# ... ...
# title: SRTM15 Earth Relief v2.5.5 at 01 arc degree
# actual_range: [-7174. 5350.]
# long_name: elevation (m)
# scale_factor: 0.5
# _FillValue: -32768
# add_offset: 0.0 so we could probably remove the sorting in There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Matching the behavior of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
The returned attributes are not the same, so There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Actually, we're using There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Hmm yeah, I just tried running ================================================================================== short test summary info ===================================================================================
FAILED ../pygmt/datatypes/grid.py::pygmt.datatypes.grid._GMT_GRID.to_dataarray
FAILED ../pygmt/tests/test_dimfilter.py::test_dimfilter_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdclip.py::test_grdclip_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdfill.py::test_grdfill_dataarray_out - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdfill.py::test_grdfill_asymmetric_pad - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdfilter.py::test_grdfilter_dataarray_in_dataarray_out - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdgradient.py::test_grdgradient_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdhisteq.py::test_equalize_grid_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdlandmask.py::test_grdlandmask_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdproject.py::test_grdproject_no_outgrid[M10c] - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdproject.py::test_grdproject_no_outgrid[EPSG:3395 +width=10] - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdproject.py::test_grdproject_no_outgrid[+proj=merc +ellps=WGS84 +units=m +width=10] - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_grdsample.py::test_grdsample_dataarray_out - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_surface.py::test_surface_input_file - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_surface.py::test_surface_input_data_array - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_surface.py::test_surface_input_xyz - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_triangulate.py::test_regular_grid_no_outgrid - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_xyz2grd.py::test_xyz2grd_input_array[array] - AssertionError: Left and right DataArray objects are not close
FAILED ../pygmt/tests/test_xyz2grd.py::test_xyz2grd_input_array[Dataset] - AssertionError: Left and right DataArray objects are not close
======================================================== 19 failed, 657 passed, 4 skipped, 5 xfailed, 2 xpassed, 5 warnings in 58.94s ======================================================== Let's just keep the ascending sort for now then. |
||||||||
|
||||||||
# Set the gmt accesssor. | ||||||||
seisman marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
# Must put at the end. The information get lost after specific grid operation. | ||||||||
grid.gmt.registration = header.registration | ||||||||
grid.gmt.gtype = header.gtype | ||||||||
return grid |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In this method,
kind
can begrid
,cube
,image
orNone
. IfNone
, we will callSession.inquire_virtualfile
to determine the family of the virtualfile.Most GMT modules can write grids only, so we can set
kind="grid"
to avoid callingSession.inquire_virtualfile
.Here are some exceptions:
grdmix
writes imagesgrdcut
writes grids or imagesgrdimage -A
writes images [Unimplemented in PyGMT]greenspine
writes grids or cubesgrdinterpolate
writes grids or cubesThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, I think we can set
kind="grid"
, unless we know if GMT will allow passing GMT_IMAGE to certain grd* modules in the future. For example, maybegrdclip
would allow GMT_IMAGE inputs at some point, and so we might want to setkind=None
for future-proofing.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We need to do more refactoring if
grdclip
would support GMT_IMAGE in the future, since we need to check the kind of the input data (grid in, grid out or image in, image out), similar to what we have to do togrdcut
(xref: #2398 (comment)).There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ok, I meant if upstream GMT were to support passing
GMT_IMAGE
intogrdclip
in the future, but not sure when that would happen. Ok to just default tokind='grid'
for now, since that's the current behaviour I think.