-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeedforward.py
46 lines (41 loc) · 1.46 KB
/
Feedforward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy
def Feedforward(Sample, Chromosome, Network_Arch, unipolarBipolarSelector):
# Feed Forward
activations = []
for i in range(len(Sample)):
activations.append(Sample[i]) # Adding Bias Node
activations.append(1)
startId = 0
v = 3
for Layer in range(1, len(Network_Arch)):
d1 = len(activations)
d2 = Network_Arch[Layer]
weights = Chromosome[startId: startId + d1 * d2]
#print(len(weights))
weights2 = []
idx = 0
for i in range(int(len(weights) / v)):
l = []
for j in range(idx, v + idx):
l.append(weights[j])
weights2.append(l)
idx += v
activations2 = []
for j in range(v):
x = 0
for k in range(len(activations)):
x = x + activations[k] * weights2[k][j]
activations2.append(x)
activations = activations2
if (unipolarBipolarSelector == 0):
for i in range(len(activations)):
activations[i] = 1. / (1 + numpy.exp(-activations[i]))
else:
for i in range(len(activations)):
activations[i] = -1 + 2. / (1 + numpy.exp(-activations[i]))
if (Layer != len(Network_Arch)-1): # Adding Bias
activations.append(1) # Adding Bias Node
startId = d1 * d2
v -= 1
outputs = activations
return outputs