Skip to content

Commit

Permalink
Cleanup Cloud SQL DB creds for notebook and frontend (#295)
Browse files Browse the repository at this point in the history
Cleanup Cloud SQL DB creds

1) Use a k8s secret for DB creds
2) Mount k8s secret in volumes for Ray & frontend pods
3) Read the mounted secret volume from the Ray job script in the notebook and from the frontend container
4) Remove unecessesary DB cred variables from the notebook
5) Fix import bug with NLP/DLP
  • Loading branch information
imreddy13 authored Mar 7, 2024
1 parent 90d1b7e commit 775407b
Show file tree
Hide file tree
Showing 16 changed files with 234 additions and 103 deletions.
50 changes: 24 additions & 26 deletions applications/rag/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,8 +93,8 @@ gcloud container clusters get-credentials ${CLUSTER_NAME:?} --location ${CLUSTER
2. Verify Jupyterhub service is setup:
* Fetch the service IP/Domain:
* IAP disabled: `kubectl get services proxy-public -n $NAMESPACE --output jsonpath='{.status.loadBalancer.ingress[0].ip}'`
* IAP enabled: Read terraform output `jupyter_uri` or use command: `kubectl get managedcertificates jupyter-managed-cert -n $NAMESPACE --output jsonpath='{.status.domainStatus[0].domain}'`
* Remember login [Google Cloud Platform IAP](https://pantheon.corp.google.com/security/iap) to check if user has role `IAP-secured Web App User`
* IAP enabled: Read terraform output: `terraform output jupyter_uri` or use command: `kubectl get managedcertificates jupyter-managed-cert -n $NAMESPACE --output jsonpath='{.status.domainStatus[0].domain}'`
* From [Google Cloud Platform IAP](https://pantheon.corp.google.com/security/iap), check if the allowlisted user has role `IAP-secured Web App User`
* Wait for domain status to be `Active`
* Go to the IP in a browser which should display the Jupyterlab login UI.

Expand Down Expand Up @@ -137,37 +137,35 @@ EOF
### Vector Embeddings for Dataset
Choose a password for your CloudSQL user:
```
SQL_PASSWORD=
```
This step generates the vector embeddings for your input dataset. Currently, the default dataset is [Google Maps Restaurant Reviews](https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews). We will use a Jupyter notebook to run a Ray job that generates the embeddings & populates them into the instance `pgvector-instance` created above.
1. Create a CloudSQL user to access the database: `gcloud sql users create rag-user-notebook --password=${SQL_PASSWORD:?} --instance=pgvector-instance --host=%`
2. Go to the Jupyterhub service endpoint in a browser:
1. Fetch the Jupyterhub service endpoint & navigate to it in a browser. This should display the JupyterLab login UI:
* IAP disabled: `kubectl get services proxy-public -n $NAMESPACE --output jsonpath='{.status.loadBalancer.ingress[0].ip}'`
* IAP enabled: Read terraform output `jupyter_uri` or use command: `kubectl get managedcertificates jupyter-managed-cert -n $NAMESPACE --output jsonpath='{.status.domainStatus[0].domain}'`
* Open Google Cloud Console IAM to verify that the user has role `IAP-secured Web App User`
* IAP enabled: Read terraform output: `terraform output jupyter_uri` or use command: `kubectl get managedcertificates jupyter-managed-cert -n $NAMESPACE --output jsonpath='{.status.domainStatus[0].domain}'`
* From [Google Cloud Platform IAP](https://pantheon.corp.google.com/security/iap), check if the allowlisted user has role `IAP-secured Web App User`.
* Wait for the domain status to be `Active`
3. Login with placeholder credentials [TBD: replace with instructions for IAP]:
* username: user
* password: use `terraform output jupyter_password` to fetch the password value
4. Once logged in, choose the `CPU` preset. Go to File -> Open From URL & upload the notebook `rag-kaggle-ray-sql.ipynb` from `https://raw.githubusercontent.com/GoogleCloudPlatform/ai-on-gke/main/applications/rag/example_notebooks/rag-kaggle-ray-sql-latest.ipynb`. This path can also be found by going to the [notebook location](https://github.com/GoogleCloudPlatform/ai-on-gke/blob/main/applications/rag/example_notebooks/rag-kaggle-ray-sql-latest.ipynb) and selecting `Raw`.
2. Login to Jupyterhub:
* IAP disabled: Use placeholder credentials:
* username: user
* password: use `terraform output jupyter_password` to fetch the password value
* IAP enabled: Login with your Google credentials.
3. Once logged in, choose the `CPU` preset. Go to File -> Open From URL & upload the notebook `rag-kaggle-ray-sql.ipynb` from `https://raw.githubusercontent.com/GoogleCloudPlatform/ai-on-gke/main/applications/rag/example_notebooks/rag-kaggle-ray-sql-latest.ipynb`. This path can also be found by going to the [notebook location](https://github.com/GoogleCloudPlatform/ai-on-gke/blob/main/applications/rag/example_notebooks/rag-kaggle-ray-sql-latest.ipynb) and selecting `Raw`.
4. Create a Kaggle account and navigate to https://www.kaggle.com/settings/account and generate an API token. See https://www.kaggle.com/docs/api#authentication how to create one from https://kaggle.com/settings. This token is used in the notebook to access the [Google Maps Restaurant Reviews dataset](https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews)
5. Replace the variables in the 3rd cell with the following to access the database:
* `INSTANCE_CONNECTION_NAME`: `<project_id>:<region>:pgvector-instance`
* `DB_USER`: `rag-user-notebook`
* `DB_PASS`: password from step 1
5. Replace the variables in the 1st cell with your Kaggle credentials (can be found in the `kaggle.json` file created by Step 4):
* `KAGGLE_USERNAME`
* `KAGGLE_KEY`
6. Create a Kaggle account and navigate to https://www.kaggle.com/settings/account and generate an API token. See https://www.kaggle.com/docs/api#authentication how to create one from https://kaggle.com/settings. This token is used in the notebook to access the [Google Maps Restaurant Reviews dataset](https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews)
6. Run all the cells in the notebook. This generates vector embeddings for the input dataset (`denizbilginn/google-maps-restaurant-reviews`) and stores them in the `pgvector-instance` via a Ray job.
* When the last cell says the job has succeeded (eg: `Job 'raysubmit_APungAw6TyB55qxk' succeeded`), the vector embeddings have been generated and we can launch the frontend chat interface.
* Ray may take several minutes to create the runtime environment. During this time, the job will appear to be missing (e.g. `Status message: Job has not started yet`).
8. Replace the kaggle username and api token in 2nd cell with your credentials (can be found in the `kaggle.json` file created by Step 6):
* `os.environ['KAGGLE_USERNAME']`
* `os.environ['KAGGLE_KEY']`
### Launch the Frontend Chat Interface
1. Setup port forwarding for the frontend [TBD: Replace with IAP]: `kubectl port-forward service/rag-frontend -n ${NAMESPACE:?} 8080:8080 &`
9. Run all the cells in the notebook. This will generate vector embeddings for the input dataset (`denizbilginn/google-maps-restaurant-reviews`) and store them in the `pgvector-instance` via a Ray job.
* If the Ray job has FAILED, re-run the cell.
* When the Ray job has SUCCEEDED, we are ready to launch the frontend chat interface.
Expand All @@ -181,10 +179,10 @@ This step generates the vector embeddings for your input dataset. Currently, the
#### With IAP Enabled
1. Verify that IAP is enabled on Google Cloud Platform (GCP) for your application. If you encounter any errors, try re-enabling IAP.
2. Verify that you have the role `IAP-secured Web App User` assigned to your user account. This role is necessary to access the application through IAP.
2. From [Google Cloud Platform IAP](https://pantheon.corp.google.com/security/iap), check if the allowlisted user has role `IAP-secured Web App User`. This role is necessary to access the application through IAP.
3. Verify the domain is active using command:
`kubectl get managedcertificates frontend-managed-cert -n rag --output jsonpath='{.status.domainStatus[0].status}'`
3. Read terraform output `frontend_uri` or use the following command to find the domain created by IAP for accessing your service:
3. Read terraform output: `terraform output frontend_uri` or use the following command to find the domain created by IAP for accessing your service:
`kubectl get managedcertificates frontend-managed-cert -n $NAMESPACE --output jsonpath='{.status.domainStatus[0].domain}'`
4. Open your browser and navigate to the domain you retrieved in the previous step to start chatting!
Expand Down
42 changes: 27 additions & 15 deletions applications/rag/example_notebooks/rag-kaggle-ray-sql-latest.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,20 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "00b1aff4",
"metadata": {},
"outputs": [],
"source": [
"# Replace these with your settings\n",
"# Navigate to https://www.kaggle.com/settings/account and generate an API token to be used to setup the env variable. See https://www.kaggle.com/docs/api#authentication how to create one.\n",
"KAGGLE_USERNAME = \"<username>\"\n",
"KAGGLE_KEY = \"<token>\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a814e91b-3afe-4c28-a3d6-fe087c7af552",
"metadata": {},
"outputs": [],
Expand All @@ -13,15 +26,14 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "1e26faef-9e2e-4793-b8af-0e18470b482d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"# navigate to https://www.kaggle.com/settings/account and generate an API token to be used to setup the env variable. See https://www.kaggle.com/docs/api#authentication how to create one.\n",
"os.environ['KAGGLE_USERNAME'] = \"<username>\"\n",
"os.environ['KAGGLE_KEY'] = \"<token>\"\n",
"os.environ['KAGGLE_USERNAME'] = KAGGLE_USERNAME\n",
"os.environ['KAGGLE_KEY'] = KAGGLE_KEY\n",
"\n",
"# Download the zip file to local storage and then extract the desired contents directly to the GKE GCS CSI mounted bucket. The bucket is mounted at the \"/persist-data\" path in the jupyter pod.\n",
"!kaggle datasets download -d denizbilginn/google-maps-restaurant-reviews -p ~/data --force\n",
Expand Down Expand Up @@ -64,12 +76,18 @@
"import sqlalchemy\n",
"\n",
"# initialize parameters\n",
"INSTANCE_CONNECTION_NAME = \"<project-id>:<location>:pgvector-instance\" # Modify the project and region based on your setting\n",
"INSTANCE_CONNECTION_NAME = \"{project}:{region}:pgvector-instance\".format(project=os.environ[\"PROJECT_ID\"], region=os.environ[\"DB_REGION\"])\n",
"print(f\"Your instance connection name is: {INSTANCE_CONNECTION_NAME}\")\n",
"DB_USER = \"rag-user-notebook\" # Modify this based on your setting\n",
"DB_PASS = \"<password>\" # Modify this based on your setting\n",
"DB_NAME = \"pgvector-database\"\n",
"\n",
"db_username_file = open(\"/etc/secret-volume/username\", \"r\")\n",
"DB_USER = db_username_file.read()\n",
"db_username_file.close()\n",
"\n",
"db_password_file = open(\"/etc/secret-volume/password\", \"r\")\n",
"DB_PASS = db_password_file.read()\n",
"db_password_file.close()\n",
"\n",
"# initialize Connector object\n",
"connector = Connector()\n",
"\n",
Expand Down Expand Up @@ -189,12 +207,6 @@
" # commit transaction (SQLAlchemy v2.X.X is commit as you go)\n",
" db_conn.commit()\n",
" print(\"Created table=\", TABLE_NAME)\n",
"\n",
" # TODO: Fix workaround access grant for the frontend to access the table.\n",
" grant_access_stmt = \"GRANT SELECT on \" + TABLE_NAME + \" to \\\"rag-user\\\";\"\n",
" db_conn.execute(\n",
" sqlalchemy.text(grant_access_stmt)\n",
" )\n",
" \n",
" query_text = \"INSERT INTO \" + TABLE_NAME + \" (id, text, text_embedding) VALUES (:id, :text, :text_embedding)\"\n",
" insert_stmt = sqlalchemy.text(query_text)\n",
Expand Down Expand Up @@ -268,7 +280,7 @@
" \"cloud-sql-python-connector[pg8000]==1.7.0\",\n",
" \"SQLAlchemy==2.0.7\",\n",
" \"huggingface_hub\",\n",
" ]\n",
" ],\n",
" }\n",
")\n",
"\n",
Expand Down
10 changes: 8 additions & 2 deletions applications/rag/frontend/container/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,8 +41,14 @@
# initialize parameters
INFERENCE_ENDPOINT=os.environ.get('INFERENCE_ENDPOINT', '127.0.0.1:8081')
INSTANCE_CONNECTION_NAME = os.environ.get('INSTANCE_CONNECTION_NAME', '')
DB_USER = os.environ.get('DB_USER', '')
DB_PASS = os.environ.get('DB_PASSWORD', '')

db_username_file = open("/etc/secret-volume/username", "r")
DB_USER = db_username_file.read()
db_username_file.close()

db_password_file = open("/etc/secret-volume/password", "r")
DB_PASS = db_password_file.read()
db_password_file.close()

db = None
filter_names = ['DlpFilter', 'WebRiskFilter']
Expand Down
2 changes: 1 addition & 1 deletion applications/rag/frontend/container/rai/dlp_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

import os
import google.cloud.dlp
from .retry import retry
from . import retry

# Convert the project id into a full resource id.
parent = os.environ.get('PROJECT_ID', 'NULL')
Expand Down
2 changes: 1 addition & 1 deletion applications/rag/frontend/container/rai/nlp_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

import os
import google.cloud.language as language
from .retry import retry
from . import retry

# Convert the project id into a full resource id.
parent = os.environ.get('PROJECT_ID', 'NULL')
Expand Down
45 changes: 14 additions & 31 deletions applications/rag/frontend/main.tf
Original file line number Diff line number Diff line change
Expand Up @@ -99,13 +99,19 @@ resource "kubernetes_deployment" "rag_frontend_deployment" {
spec {
service_account_name = var.google_service_account
container {
image = "us-central1-docker.pkg.dev/ai-on-gke/rag-on-gke/frontend@sha256:e2dd85e92f42e3684455a316dee5f98f61f1f3fba80b9368bd6f48d5e2e3475e"
image = "us-central1-docker.pkg.dev/ai-on-gke/rag-on-gke/frontend@sha256:3d3b03e4bc6c8fe218105bd69cc6f9cfafb18fc4b1bbb81f5c46f2598b5d5f10"
name = "rag-frontend"

port {
container_port = 8080
}

volume_mount {
name = "secret-volume"
mount_path = "/etc/secret-volume"
read_only = true
}

env {
name = "PROJECT_ID"
value = "projects/${var.project_id}"
Expand All @@ -126,36 +132,6 @@ resource "kubernetes_deployment" "rag_frontend_deployment" {
value = var.dataset_embeddings_table_name
}

env {
name = "DB_USER"
value_from {
secret_key_ref {
name = var.db_secret_name
key = "username"
}
}
}

env {
name = "DB_PASSWORD"
value_from {
secret_key_ref {
name = var.db_secret_name
key = "password"
}
}
}

env {
name = "DB_NAME"
value_from {
secret_key_ref {
name = var.db_secret_name
key = "database"
}
}
}

resources {
limits = {
cpu = "3"
Expand All @@ -170,6 +146,13 @@ resource "kubernetes_deployment" "rag_frontend_deployment" {
}
}

volume {
secret {
secret_name = var.db_secret_name
}
name = "secret-volume"
}

container {
image = "gcr.io/cloud-sql-connectors/cloud-sql-proxy:2.8.0"
name = "cloud-sql-proxy"
Expand Down
8 changes: 1 addition & 7 deletions applications/rag/frontend/variables.tf
Original file line number Diff line number Diff line change
Expand Up @@ -37,13 +37,7 @@ variable "cloudsql_instance" {

variable "db_secret_name" {
type = string
description = "CloudSQL user"
}

variable "db_secret_namespace" {
type = string
description = "CloudSQL password"
default = "rag"
description = "CloudSQL user credentials"
}

variable "dataset_embeddings_table_name" {
Expand Down
4 changes: 3 additions & 1 deletion applications/rag/main.tf
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@ module "cloudsql" {
project_id = var.project_id
instance_name = var.cloudsql_instance
namespace = var.kubernetes_namespace
region = var.cloudsql_instance_region
depends_on = [module.namespace]
}

Expand Down Expand Up @@ -179,6 +180,8 @@ module "kuberay-cluster" {
enable_tpu = local.enable_tpu
autopilot_cluster = local.enable_autopilot
google_service_account = var.ray_service_account
db_secret_name = module.cloudsql.db_secret_name
db_region = var.cloudsql_instance_region
grafana_host = module.kuberay-monitoring.grafana_uri
depends_on = [module.kuberay-operator]
}
Expand Down Expand Up @@ -212,7 +215,6 @@ module "frontend" {
inference_service_endpoint = module.inference-server.inference_service_endpoint
cloudsql_instance = module.cloudsql.instance
db_secret_name = module.cloudsql.db_secret_name
db_secret_namespace = module.cloudsql.db_secret_namespace
dataset_embeddings_table_name = var.dataset_embeddings_table_name

# IAP Auth parameters
Expand Down
6 changes: 6 additions & 0 deletions applications/rag/variables.tf
Original file line number Diff line number Diff line change
Expand Up @@ -270,6 +270,12 @@ variable "cloudsql_instance" {
default = "pgvector-instance"
}

variable "cloudsql_instance_region" {
type = string
description = "GCP region for CloudSQL instance"
default = "us-central1"
}

variable "cpu_pools" {
type = list(object({
name = string
Expand Down
3 changes: 2 additions & 1 deletion applications/rag/workloads.tfvars
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,8 @@ kubernetes_namespace = "rag"
create_gcs_bucket = true
gcs_bucket = "rag-data-xyzu" # Choose a globally unique bucket name.

cloudsql_instance = "pgvector-instance"
cloudsql_instance = "pgvector-instance"
cloudsql_instance_region = "us-central1"
## Service accounts
# Creates a google service account & k8s service account & configures workload identity with appropriate permissions.
# Set to false & update the variable `ray_service_account` to use an existing IAM service account.
Expand Down
Loading

0 comments on commit 775407b

Please sign in to comment.