-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlog.py
130 lines (115 loc) · 4.62 KB
/
log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import os
import socket
import time
import numpy as np
import streamtologger
def set_up_log(args, sys_argv):
log_dir = args.log_dir
save_dir = os.path.join(args.res_dir, 'model', args.dataset)
dataset_log_dir = os.path.join(log_dir, args.dataset)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(log_dir):
os.mkdir(log_dir)
if not os.path.exists(dataset_log_dir):
os.mkdir(dataset_log_dir)
args.stamp = time.strftime('%m%d%y_%H%M%S')
file_path = os.path.join(dataset_log_dir, f"{args.stamp}.log")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(file_path)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info('Create log file at {}'.format(file_path))
logger.info('Command line executed: python ' + ' '.join(sys_argv))
logger.info('Full args parsed:')
logger.info(args)
if args.debug:
streamtologger.redirect(target=logger)
return logger
def save_performance_result(args, logger, metrics, repeat=0):
summary_file = args.summary_file
if summary_file != 'test':
summary_file = os.path.join(args.log_dir, summary_file)
else:
return
dataset = args.dataset
val_metric, no_val_metric = metrics
model_name = '-'.join([args.model, str(args.num_step), str(args.num_walk), str(args.K)])
seed = args.seed
log_name = os.path.split(logger.handlers[1].baseFilename)[-1]
server = socket.gethostname()
line = '\t'.join(
[dataset, model_name, str(seed), str(round(val_metric, 4)), f'R{repeat}', str(round(no_val_metric, 4)),
log_name, server]) + '\n'
try:
with open(summary_file, 'a') as f:
f.write(line)
except:
raise Warning(f'Unable to write back summary file at {summary_file}.')
def save_to_file(dic, args, logger, dtype):
save_dict = dic.copy()
flag = 'W' if args.use_weight else 'R'
if args.save:
if args.use_val and dtype == 'test':
file_name = f'{args.res_dir}/dict/{args.dataset}_{dtype}_{args.num_step}_{args.num_walk}_{flag}_uval.pt'
else:
file_name = f'{args.res_dir}/dict/{args.dataset}_{dtype}_{args.num_step}_{args.num_walk}_{flag}_wo.pt'
if not os.path.exists(file_name):
save_dict.pop('num')
keys, values = list(save_dict.keys()), list(save_dict.values())
walks, ids, freqs = zip(*values)
np.savez(file_name, X=keys, Y=ids, W=walks, F=freqs)
logger.info(f'Saved {dtype} set to {file_name}')
else:
logger.info(f'File exists, {dtype} skipped.')
else:
logger.info(f'Converted {dtype} set to tensor.')
save_dict['flag'] = False
return save_dict
def log_record(logger, tb, out, dic, b_time, batchIdx):
mode, metric, auc = out['mode'], out['metric'], out['auc']
dt = time.time() - b_time
if tb is not None:
tb.add_scalar(f"AUC/{mode}", auc, batchIdx)
key_metric, key_auc = f'{mode}_{metric}', f'{mode}_AUC'
if metric == 'mrr':
out_metric = out['mrr_list'].mean()
if tb is not None:
tb.add_scalar(f"MRR/{mode}", out_metric, batchIdx)
logger.info(f"AUC/{mode}: {auc:.4f}, MRR {out_metric:.4f} # {len(out['mrr_list'])} Time {dt:.2f}s")
dic[key_metric].append(out_metric.item())
elif 'Hit' in metric:
if tb is not None:
tb.add_scalars(f"Hits/{mode}", out['hits'], batchIdx)
hits = ' '.join([f'{k}: {v:.4f}' for k, v in out['hits'].items()])
logger.info(f"AUC/{mode}: {auc:.4f}, {hits} # {out['num_pos']} Time {dt:.2f}s")
dic[key_metric].append(out['hits'][metric])
else:
raise NotImplementedError
dic[key_auc].append(auc)
val_metric = f'val_{metric}'
len_val = len(dic[val_metric])
if mode == 'test':
len_test = len(dic[key_metric])
if len_val > len_test:
idx = np.argmax(dic[val_metric][-len_test:]) - len_test
else:
idx = np.argmax(dic[val_metric])
logger.info(f'Best {metric}: val {dic[val_metric][idx]:.4f} test {dic[key_metric][idx]:.4f}')
if idx == (len_test - 1):
return True
elif mode == 'val':
if np.argmax(dic[val_metric]) == (len_val - 1):
return True
return False