Skip to content

android-perf

android-perf #35

Workflow file for this run

name: android-perf
on:
schedule:
- cron: 0 0 * * *
# Note: GitHub has an upper limit of 10 inputs
workflow_dispatch:
inputs:
models:
description: Models to be benchmarked
required: false
type: string
default: stories110M
devices:
description: Target devices to run benchmark
required: false
type: string
default: samsung_galaxy_s2x
delegates:
description: Backend delegates
required: false
type: string
default: xnnpack
threadpool:
description: Run with threadpool?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
test_spec:
description: The test spec to drive the test on AWS devices
required: false
type: string
workflow_call:
inputs:
models:
description: Models to be benchmarked
required: false
type: string
default: stories110M
devices:
description: Target devices to run benchmark
required: false
type: string
default: samsung_galaxy_s2x
delegates:
description: Backend delegates
required: false
type: string
default: xnnpack
threadpool:
description: Run with threadpool?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
test_spec:
description: The test spec to drive the test on AWS devices
required: false
type: string
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
jobs:
set-parameters:
runs-on: linux.2xlarge
outputs:
models: ${{ steps.set-parameters.outputs.models }}
devices: ${{ steps.set-parameters.outputs.devices }}
delegates: ${{ steps.set-parameters.outputs.delegates }}
steps:
- name: Set parameters
id: set-parameters
shell: bash
env:
# Separate default values from the workflow dispatch. To ensure defaults are accessible
# during scheduled runs and to provide flexibility for different defaults between
# on-demand and periodic benchmarking.
CRON_DEFAULT_MODELS: "stories110M"
CRON_DEFAULT_DEVICES: "samsung_galaxy_s2x"
CRON_DEFAULT_DELEGATES: "xnnpack"
run: |
set -ex
MODELS="${{ inputs.models }}"
if [ -z "$MODELS" ]; then
MODELS="$CRON_DEFAULT_MODELS"
fi
DEVICES="${{ inputs.devices }}"
if [ -z "$DEVICES" ]; then
DEVICES="$CRON_DEFAULT_DEVICES"
fi
DELEGATES="${{ inputs.delegates }}"
if [ -z "$DELEGATES" ]; then
DELEGATES="$CRON_DEFAULT_DELEGATES"
fi
# Mapping devices to their corresponding device-pool-arn
declare -A DEVICE_POOL_ARNS
DEVICE_POOL_ARNS[samsung_galaxy_s2x]="arn:aws:devicefarm:us-west-2:308535385114:devicepool:02a2cf0f-6d9b-45ee-ba1a-a086587469e6/e59f866a-30aa-4aa1-87b7-4510e5820dfa"
# Resolve device names with their corresponding ARNs
if [[ ! $(echo "$DEVICES" | jq empty 2>/dev/null) ]]; then
DEVICES=$(echo "$DEVICES" | jq -Rc 'split(",")')
fi
declare -a MAPPED_ARNS=()
for DEVICE in $(echo "$DEVICES" | jq -r '.[]'); do
if [[ -z "${DEVICE_POOL_ARNS[$DEVICE]}" ]]; then
echo "Error: No ARN found for device '$DEVICE'. Abort." >&2
exit 1
fi
MAPPED_ARNS+=("${DEVICE_POOL_ARNS[$DEVICE]}")
done
echo "models=$(echo $MODELS | jq -Rc 'split(",")')" >> $GITHUB_OUTPUT
MAPPED_ARNS_JSON=$(printf '%s\n' "${MAPPED_ARNS[@]}" | jq -R . | jq -s .)
echo "devices=$(echo "$MAPPED_ARNS_JSON" | jq -c .)" >> $GITHUB_OUTPUT
echo "delegates=$(echo $DELEGATES | jq -Rc 'split(",")')" >> $GITHUB_OUTPUT
export-models:
name: export-models
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
needs: set-parameters
strategy:
matrix:
model: ${{ fromJson(needs.set-parameters.outputs.models) }}
delegate: ${{ fromJson(needs.set-parameters.outputs.delegates) }}
fail-fast: false
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12-android
submodules: 'true'
timeout: 60
upload-artifact: android-models
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
echo "::group::Setting up dev environment"
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
if [[ ${{ matrix.delegate }} == "qnn" ]]; then
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-qnn-deps.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/build-qnn-sdk.sh
fi
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh "cmake"
ARTIFACTS_DIR_NAME=artifacts-to-be-uploaded/${{ matrix.model }}_${{ matrix.delegate }}
echo "::endgroup::"
echo "::group::Exporting ${{ matrix.delegate }} model: ${{ matrix.model }}"
BUILD_MODE="cmake"
DTYPE="fp32"
if [[ ${{ matrix.model }} =~ ^stories* ]]; then
# Install requirements for export_llama
PYTHON_EXECUTABLE=python bash examples/models/llama2/install_requirements.sh
# Test llama2
if [[ ${{ matrix.delegate }} == "xnnpack" ]]; then
DELEGATE_CONFIG="xnnpack+custom+qe"
fi
PYTHON_EXECUTABLE=python bash .ci/scripts/test_llama.sh "${{ matrix.model }}" "${BUILD_MODE}" "${DTYPE}" "${DELEGATE_CONFIG}" "${ARTIFACTS_DIR_NAME}"
else
PYTHON_EXECUTABLE=python bash .ci/scripts/test.sh "${{ matrix.model }}" "${BUILD_MODE}" "${{ matrix.delegate }}" "${ARTIFACTS_DIR_NAME}"
fi
echo "::endgroup::"
# Upload models to S3. The artifacts are needed not only by the device farm but also TorchChat
upload-models:
needs: export-models
runs-on: linux.2xlarge
steps:
- name: Download the models from GitHub
uses: actions/download-artifact@v3
with:
# The name here needs to match the name of the upload-artifact parameter
name: android-models
path: ${{ runner.temp }}/artifacts/
- name: Verify the models
shell: bash
working-directory: ${{ runner.temp }}/artifacts/
run: |
ls -lah ./
- name: Upload the models to S3
uses: seemethere/upload-artifact-s3@v5
with:
s3-bucket: gha-artifacts
s3-prefix: |
${{ github.repository }}/${{ github.run_id }}/artifact
retention-days: 1
if-no-files-found: ignore
path: ${{ runner.temp }}/artifacts/
build-llm-demo:
name: build-llm-demo
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
needs: set-parameters
strategy:
matrix:
tokenizer: [bpe]
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12-android
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
upload-artifact: android-apps
script: |
set -eux
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh cmake
export ARTIFACTS_DIR_NAME=artifacts-to-be-uploaded
# TODO: This needs to be replaced with a generic loader .apk
# Build LLM Demo for Android
bash build/build_android_llm_demo.sh ${{ matrix.tokenizer }} ${ARTIFACTS_DIR_NAME}
# Upload artifacts to S3. The artifacts are needed not only by the device farm but also TorchChat
upload-android-apps:
needs: build-llm-demo
runs-on: linux.2xlarge
steps:
- name: Download the apps from GitHub
uses: actions/download-artifact@v3
with:
# The name here needs to match the name of the upload-artifact parameter
name: android-apps
path: ${{ runner.temp }}/artifacts/
- name: Verify the apps
shell: bash
working-directory: ${{ runner.temp }}/artifacts/
run: |
ls -lah ./
- name: Upload the apps to S3
uses: seemethere/upload-artifact-s3@v5
with:
s3-bucket: gha-artifacts
s3-prefix: |
${{ github.repository }}/${{ github.run_id }}/artifact
retention-days: 14
if-no-files-found: ignore
path: ${{ runner.temp }}/artifacts/
# Let's see how expensive this job is, we might want to tone it down by running it periodically
benchmark-on-device:
permissions:
id-token: write
contents: read
uses: pytorch/test-infra/.github/workflows/mobile_job.yml@main
needs:
- set-parameters
- upload-models
- upload-android-apps
strategy:
matrix:
model: ${{ fromJson(needs.set-parameters.outputs.models) }}
delegate: ${{ fromJson(needs.set-parameters.outputs.delegates) }}
device: ${{ fromJson(needs.set-parameters.outputs.devices) }}
with:
device-type: android
runner: linux.2xlarge
test-infra-ref: ''
# This is the ARN of ExecuTorch project on AWS
project-arn: arn:aws:devicefarm:us-west-2:308535385114:project:02a2cf0f-6d9b-45ee-ba1a-a086587469e6
device-pool-arn: ${{ matrix.device }}
# Uploaded to S3 from the previous job, the name of the app comes from the project itself.
# Unlike models there are limited numbers of build flavor for apps, and the model controls whether it should build with bpe/tiktoken tokenizer.
# It's okay to build all possible apps with all possible flavors in job "build-llm-demo". However, in this job, once a model is given, there is only
# one app+flavor that could load and run the model.
# TODO: Hard code llm_demo_bpe for now in this job.
android-app-archive: https://gha-artifacts.s3.amazonaws.com/${{ github.repository }}/${{ github.run_id }}/artifact/llm_demo_bpe/app-debug.apk
android-test-archive: https://gha-artifacts.s3.amazonaws.com/${{ github.repository }}/${{ github.run_id }}/artifact/llm_demo_bpe/app-debug-androidTest.apk
# NB: Need to set the default spec here so that it works for periodic too
test-spec: ${{ inputs.test_spec || 'https://ossci-android.s3.amazonaws.com/executorch/android-llm-device-farm-test-spec.yml' }}
# Uploaded to S3 from the previous job
extra-data: https://gha-artifacts.s3.amazonaws.com/${{ github.repository }}/${{ github.run_id }}/artifact/${{ matrix.model }}_${{ matrix.delegate }}/model.zip