-
Notifications
You must be signed in to change notification settings - Fork 0
/
GLM_ridge.Rmd
145 lines (120 loc) · 3.89 KB
/
GLM_ridge.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
title: "GLM-ridge"
author: "Guiquan"
date: "2021/7/12"
output:
pdf_document: default
html_document: default
editor_options:
chunk_output_type: inline
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
Development of GLM-ridge-based candidate strategy models.
# Bayesian Optimization for Hyper Parameters.
## **PORSM**
```{r}
library(tidymodels)
# Data preparation and specifications.
porsm_mod_spec <-
logistic_reg(mixture = 0, penalty = tune()) %>%
set_engine("glmnet")
porsm_workflow_spec <- workflow() %>%
add_model(porsm_mod_spec) %>%
add_formula(POR ~.)
porsm_bayes_params <- parameters(porsm_workflow_spec) %>%
update(penalty = penalty(c(-4, 1), trans = log10_trans()))
# Create cross-validation resamples.
set.seed(777)
porsm_valset <- vfold_cv(porsm_train, v = 5, strata = POR)
# Start tuning.
cl <- parallel::makeCluster(8)
doParallel::registerDoParallel(cl)
porsm_bayes_regs <- tune_bayes(
porsm_workflow_spec,
resamples = porsm_valset,
param_info = porsm_bayes_params,
iter = 100,
metrics = metric_set(roc_auc, mn_log_loss),
control = control_bayes(no_improve = 50, verbose = TRUE)
)
parallel::stopCluster(cl)
```
## **HORSM**
```{r}
# Data preparation and specifications.
horsm_mod_spec <-
logistic_reg(mixture = 0, penalty = tune()) %>%
set_engine("glmnet")
horsm_workflow_spec <- workflow() %>%
add_model(horsm_mod_spec) %>%
add_formula(HOR ~.)
horsm_bayes_params <- parameters(horsm_workflow_spec) %>%
update(penalty = penalty(c(-4, 1), trans = log10_trans()))
# Create cross-validation resamples.
set.seed(777)
horsm_valset <- vfold_cv(horsm_train, v = 5, strata = HOR)
# Start tuning.
cl <- parallel::makeCluster(8)
doParallel::registerDoParallel(cl)
horsm_bayes_regs <- tune_bayes(
horsm_workflow_spec,
resamples = horsm_valset,
param_info = horsm_bayes_params,
iter = 100,
metrics = metric_set(roc_auc, mn_log_loss),
control = control_bayes(no_improve = 50, verbose = TRUE)
)
parallel::stopCluster(cl)
```
# Construction of Strategy models and calculate AUC/Brier score.
## Developing models.
```{r}
set.seed(777)
# Strategy models on train data.
porsm <- select_best(porsm_bayes_regs, "roc_auc") %>%
finalize_workflow(porsm_workflow_spec, .) %>%
fit(., porsm_train)
horsm <- select_best(horsm_bayes_regs, "roc_auc") %>%
finalize_workflow(horsm_workflow_spec, .) %>%
fit(., horsm_train)
```
## Calculate AUC and Brier score.
```{r}
# AUC and 95%CI.
set.seed(777)
roc_porsm <- porsm_test %>%
select(POR) %>%
bind_cols(predict(porsm, porsm_test, type = "prob")) %>%
sjmisc::rec(POR, rec = "No = 0; Yes = 1") %>%
select(-c(.pred_Yes, POR)) %>%
pROC::roc(POR_r, .pred_No, auc = TRUE)
roc_porsm %>% pROC::ci.auc(method = "bootstrap")
roc_horsm <- horsm_test %>%
select(HOR) %>%
bind_cols(predict(horsm, horsm_test, type = "prob")) %>%
sjmisc::rec(HOR, rec = "No = 0; Yes = 1") %>%
select(-c(.pred_Yes, HOR)) %>%
pROC::roc(HOR_r, .pred_No, auc = TRUE)
roc_horsm %>% pROC::ci.auc(method = "bootstrap")
# Brier score.
brier_score <- function(preds, obs) {
mean((obs - preds)^2)
}
preds_porsm <- predict(porsm, porsm_test, type = "prob") %>% .[[".pred_Yes"]]
obs_porsm <- porsm_test %>% select(POR) %>% sjmisc::rec(., rec = "No = 0; Yes = 1") %>% .[["POR_r"]] %>%
as.character()%>% as.numeric()
brier_score(obs_porsm, preds_porsm)
preds_horsm <- predict(horsm, horsm_test, type = "prob") %>% .[[".pred_Yes"]]
obs_horsm <- horsm_test %>% select(HOR) %>% sjmisc::rec(., rec = "No = 0; Yes = 1") %>% .[["HOR_r"]] %>%
as.character()%>% as.numeric()
brier_score(obs_horsm, preds_horsm)
```
# Export roc objects for plotting ROC.
```{r}
roc_ridge_porsm <- roc_porsm
roc_ridge_horsm <- roc_horsm
save(roc_ridge_porsm, roc_ridge_horsm,
file = "roc_ridge.RData")
```