-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
397 lines (324 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import argparse
import os
import sys
from pathlib import Path
from typing import Tuple
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import utils.logging
from audio.processing import (melscale_bank_from_spectrogram,
melscale_spectrogram_from_waveform)
from data.collate import single_speaker_collate
from data.dataset import SingleSpeakerDataset
from data.samplers import DistributedBucketSampler
from model import commons
from model.discriminators import MultiPeriodDiscriminator
from model.losses import (discriminator_loss, feature_loss, generator_loss,
kl_loss)
from model.synthesizer import SynthesizerTrn
from params import Params
from utils.checkpoint import latest_checkpoint_path, load_checkpoint
from utils.plot import plot_alignment_to_numpy, plot_spectrogram_to_numpy
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
if not torch.cuda.is_available():
print('CPU training is not allowed')
sys.exit(1)
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8000'
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=Path, required=True, help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True, help='Model name')
parser.add_argument('-w', '--workers', type=int, default=os.cpu_count(), help='Dataloader worker count')
args = parser.parse_args()
params = Params.parse_file(args.config)
cwd = Path(os.getcwd())
model_dir = cwd / 'logs' / args.model
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, params, model_dir, args))
def run(rank: int, n_gpus: int, params: Params, model_dir: Path, args):
global global_step
if rank == 0:
logger = utils.logging.get_logger(model_dir, 'train.log')
writer = SummaryWriter(str(model_dir))
writer_eval = SummaryWriter(log_dir=str(model_dir / 'eval'))
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.cuda.set_device(rank)
torch.manual_seed(params.train.seed)
torch.cuda.manual_seed(params.train.seed)
train_dataset = SingleSpeakerDataset.from_params(params.data.training_files, params.data)
train_sampler = DistributedBucketSampler(
dataset=train_dataset,
batch_size=params.train.batch_size,
boundaries=[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True
)
train_loader = DataLoader(
dataset=train_dataset,
pin_memory=True,
collate_fn=single_speaker_collate,
batch_sampler=train_sampler,
num_workers=args.workers
)
if rank == 0:
eval_dataset = SingleSpeakerDataset.from_params(params.data.validation_files, params.data)
eval_loader = DataLoader(
dataset=eval_dataset,
batch_size=params.train.batch_size,
pin_memory=True,
drop_last=False,
collate_fn=single_speaker_collate,
num_workers=args.workers
)
net_g = SynthesizerTrn.from_params(params).cuda(rank)
net_d = MultiPeriodDiscriminator(use_spectral_norm=params.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
params=net_g.parameters(),
lr=params.train.learning_rate,
betas=params.train.betas,
eps=params.train.eps
)
optim_d = torch.optim.AdamW(
params=net_d.parameters(),
lr=params.train.learning_rate,
betas=params.train.betas,
eps=params.train.eps
)
net_g = DistributedDataParallel(module=net_g, device_ids=[rank])
net_d = DistributedDataParallel(module=net_d, device_ids=[rank])
try:
_, epoch_str = load_checkpoint(latest_checkpoint_path(model_dir, 'G_*.pth'), net_g, optim_g)
_, epoch_str = load_checkpoint(latest_checkpoint_path(model_dir, 'D_*.pth'), net_d, optim_d)
global_step = (epoch_str - 1) * len(train_loader)
except IndexError:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optimizer=optim_g,
gamma=params.train.lr_decay,
last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optimizer=optim_d,
gamma=params.train.lr_decay,
last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=params.train.fp16_run)
for epoch in range(epoch_str, params.train.epochs + 1):
train_sampler.set_epoch(epoch)
if rank == 0:
train_and_evaluate(
rank=rank,
epoch=epoch,
params=params,
model_dir=model_dir,
nets=[net_g, net_d],
optims=[optim_g, optim_d],
scaler=scaler,
loaders=[train_loader, eval_loader],
logger=logger,
writers=(writer, writer_eval)
)
logger.info(f'====> Epoch: {epoch}')
else:
train_and_evaluate(
rank=rank,
epoch=epoch,
params=params,
model_dir=model_dir,
nets=[net_g, net_d],
optims=[optim_g, optim_d],
scaler=scaler,
loaders=[train_loader, None]
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank: int, epoch: int, params: Params, model_dir: Path,
nets, optims, scaler, loaders, logger=None,
writers: Tuple[SummaryWriter, SummaryWriter] = None):
global global_step
net_g, net_d = nets
optim_g, optim_d = optims
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
net_g.train()
net_d.train()
for (x, x_lengths, spec, spec_lengths, y, y_lengths) in train_loader:
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
with autocast(enabled=params.train.fp16_run):
y_hat, l_length, attn, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
mel = melscale_bank_from_spectrogram(
spectrogram=spec,
n_fft=params.data.filter_length,
num_mels=params.data.n_mel_channels,
sampling_rate=params.data.sampling_rate,
fmin=params.data.mel_fmin,
fmax=params.data.mel_fmax
)
y_mel = commons.slice_segments(
x=mel,
ids_str=ids_slice,
segment_size=params.train.segment_size // params.data.hop_length
)
y_hat_mel = melscale_spectrogram_from_waveform(
waveform=y_hat.squeeze(1),
n_fft=params.data.filter_length,
num_mels=params.data.n_mel_channels,
sampling_rate=params.data.sampling_rate,
hop_size=params.data.hop_length,
win_size=params.data.win_length,
fmin=params.data.mel_fmin,
fmax=params.data.mel_fmax
)
y = commons.slice_segments(
x=y,
ids_str=ids_slice * params.data.hop_length,
segment_size=params.train.segment_size
)
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=params.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_mel = F.l1_loss(y_mel, y_hat_mel) * params.train.c_mel
loss_dur = torch.sum(l_length.float())
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * params.train.c_kl
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
global_step += 1
if rank == 0:
if global_step % params.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
logger.info(
'Epoch: %d. Step: %d -> lr = %f, loss_disc = %f, loss_gen = %f, loss_fm = %f, loss_mel = %f, loss_dur = %f, loss_kl = %f, loss_gen_all = %f',
epoch, global_step, lr, loss_disc.item(), loss_gen.item(), loss_fm.item(), loss_mel.item(),
loss_dur.item(), loss_kl.item(), loss_gen_all.item()
)
scalars = {
'loss/g/total': loss_gen_all,
'loss/d/total': loss_disc_all,
'loss/g/fm': loss_fm,
'loss/g/mel': loss_mel,
'loss/g/dur': loss_dur,
'loss/g/kl': loss_kl,
'learning_rate': lr,
'grad_norm_d': grad_norm_d,
'grad_norm_g': grad_norm_g
}
images = {
'slice/mel_org': plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
'slice/mel_gen': plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
'all/mel': plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
'all/attn': plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
}
for i, v in enumerate(losses_gen):
scalars[f'loss/g/{i}'] = v
for i, v in enumerate(losses_disc_r):
scalars[f'loss/d_r/{i}'] = v
for i, v in enumerate(losses_disc_g):
scalars[f'loss/d_g/{i}'] = v
utils.checkpoint.summarize(
writer=writer,
global_step=global_step,
images=images,
scalars=scalars,
audio_sampling_rate=params.data.sampling_rate
)
if global_step % params.train.eval_interval == 0:
evaluate(params, net_g, eval_loader, writer_eval)
utils.checkpoint.save_checkpoint(
model=net_g,
optimizer=optim_g,
learning_rate=params.train.learning_rate,
iteration=epoch,
checkpoint_path=model_dir / f'G_{global_step}.pth'
)
utils.checkpoint.save_checkpoint(
model=net_d,
optimizer=optim_d,
learning_rate=params.train.learning_rate,
iteration=epoch,
checkpoint_path=model_dir / f'D_{global_step}.pth'
)
def evaluate(params: Params, generator, eval_loader, writer_eval: SummaryWriter):
generator.eval()
with torch.inference_mode():
for (x, x_lengths, spec, spec_lengths, y, y_lengths) in eval_loader:
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
break
y_hat, _, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
y_hat_lengths = mask.sum([1, 2]).long() * params.data.hop_length
mel = melscale_bank_from_spectrogram(
spectrogram=spec,
n_fft=params.data.filter_length,
num_mels=params.data.n_mel_channels,
sampling_rate=params.data.sampling_rate,
fmin=params.data.mel_fmin,
fmax=params.data.mel_fmax
)
y_hat_mel = melscale_spectrogram_from_waveform(
waveform=y_hat.squeeze(1).float(),
n_fft=params.data.filter_length,
num_mels=params.data.n_mel_channels,
sampling_rate=params.data.sampling_rate,
hop_size=params.data.hop_length,
win_size=params.data.win_length,
fmin=params.data.mel_fmin,
fmax=params.data.mel_fmax
)
images = {
'gen/mel': plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audios = {
'gen/audio': y_hat[0, :, :y_hat_lengths[0]]
}
if global_step == 0:
images['gt/mel'] = plot_spectrogram_to_numpy(mel[0].cpu().numpy())
audios['gt/audio'] = y[0, :, :y_lengths[0]]
utils.checkpoint.summarize(
writer=writer_eval,
global_step=global_step,
images=images,
audios=audios,
audio_sampling_rate=params.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()