-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #722 from HEXRD/polar-view-speedups
Add option to cache coordinate map in PolarView projection
- Loading branch information
Showing
4 changed files
with
200 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
from pathlib import Path | ||
|
||
import h5py | ||
import numpy as np | ||
import pytest | ||
|
||
from hexrd import imageseries | ||
from hexrd.imageseries.process import ProcessedImageSeries | ||
from hexrd.instrument import HEDMInstrument | ||
from hexrd.projections.polar import PolarView | ||
|
||
|
||
@pytest.fixture | ||
def eiger_examples_path(example_repo_path: Path) -> Path: | ||
return Path(example_repo_path) / 'eiger' | ||
|
||
|
||
@pytest.fixture | ||
def ceria_examples_path(eiger_examples_path: Path) -> Path: | ||
return eiger_examples_path / 'first_ceria' | ||
|
||
|
||
@pytest.fixture | ||
def ceria_example_data(ceria_examples_path: Path) -> np.ndarray: | ||
data_path = ceria_examples_path / 'ff_000_data_000001.h5' | ||
with h5py.File(data_path, 'r') as rf: | ||
# Just return the first frame | ||
return rf['/entry/data/data'][0] | ||
|
||
|
||
@pytest.fixture | ||
def ceria_composite_instrument(ceria_examples_path: Path) -> HEDMInstrument: | ||
instr_path = ( | ||
ceria_examples_path / 'eiger_ceria_uncalibrated_composite.hexrd' | ||
) | ||
with h5py.File(instr_path, 'r') as rf: | ||
return HEDMInstrument(rf) | ||
|
||
|
||
def test_polar_view( | ||
ceria_composite_instrument: HEDMInstrument, | ||
ceria_example_data: np.ndarray, | ||
test_data_dir: Path, | ||
): | ||
instr = ceria_composite_instrument | ||
image_data = ceria_example_data | ||
|
||
# Break up the image data into separate images for each detector | ||
# It's easiest to do this using hexrd's imageseries and | ||
# ProcessedImageSeries | ||
ims_dict = {} | ||
ims = imageseries.open(None, format='array', data=image_data) | ||
for det_key, panel in instr.detectors.items(): | ||
ims_dict[det_key] = ProcessedImageSeries( | ||
ims, oplist=[('rectangle', panel.roi)] | ||
) | ||
|
||
# Create the img_dict | ||
img_dict = {k: v[0] for k, v in ims_dict.items()} | ||
|
||
# Create the PolarView | ||
tth_range = [0, 14.0] | ||
eta_min = -180.0 | ||
eta_max = 180.0 | ||
pixel_size = (0.01, 5.0) | ||
|
||
pv = PolarView(tth_range, instr, eta_min, eta_max, pixel_size) | ||
img = pv.warp_image(img_dict, pad_with_nans=True, | ||
do_interpolation=True) | ||
|
||
# This is a masked array. Just fill it with nans. | ||
img = img.filled(np.nan) | ||
|
||
# Verify that the image is identical to a reference image | ||
ref = np.load( | ||
test_data_dir / 'test_polar_view_expected.npy', allow_pickle=True | ||
) | ||
assert np.allclose(img, ref, equal_nan=True) | ||
|
||
# Also generate it using the cache | ||
pv = PolarView(tth_range, instr, eta_min, eta_max, pixel_size, | ||
cache_coordinate_map=True) | ||
fast_img = pv.warp_image(img_dict, pad_with_nans=True, | ||
do_interpolation=True) | ||
|
||
# This should also be identical | ||
fast_img = fast_img.filled(np.nan) | ||
assert np.allclose(fast_img, ref, equal_nan=True) |