-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
202 lines (158 loc) · 8.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
'''
=================================================
@Author : Senbao Shi
@Date : 2023/7/13
@Desc : Train the GEMEL model and save the optimal checkpoint.
Parameters are set in params.py. The model structure is in model.py
=================================================
'''
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoModel
from model import GEMELModel
import random
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import params
from utils import check_dirs, set_seed, GEMELDataset, calc_acc, load_prefix_tree, get_embed, train_configure
def _test(args):
test_ds = GEMELDataset(args.data_file['test'], args.tokenizer, **args.kwargs_ds)
test_dl = DataLoader(test_ds, batch_size=args.eval_bs, collate_fn=test_ds.collate_fn, shuffle=False)
print('\nload linear')
checkpoint_file = f'{args.ckpt_dir}{args.model_name}_{args.dataset}_linear_{args.visual_prefix_length}token_{args.ICL_examples_num}examples.pkl' # only save 1 checkpoint
checkpoint = torch.load(checkpoint_file)
args.model.linear.load_state_dict(checkpoint)
acc = _eval(args, test_dl)
def _eval(args, dl):
print('Test...')
# record
eval_steps = len(dl)
predictions, targets = [], []
# evaluate
args.model.eval()
with torch.no_grad():
with tqdm(total=eval_steps) as pbar:
for step, batch_data in enumerate(dl):
pbar.set_description(f'eval steps: {step}')
pbar.update(1)
batch_pairs, batch_targets = batch_data
features = {
"batch_pairs": batch_pairs,
"num_beams": args.num_beams,
"num_return_sequences": 1,
"max_new_tokens": args.max_new_tokens,
}
if args.use_prefix_tree:
features['prefix_allowed_tokens_fn'] = lambda batch_id, sent: args.trie.get(sent.tolist())
generated = args.model.generate(**features)
batch_preds = args.tokenizer.batch_decode(generated, skip_special_tokens=True)
predictions.extend(batch_preds)
targets.extend(batch_targets)
# log prediction
if not step % 100:
i = random.randint(0, len(batch_targets) - 1)
input_text = ''.join([t for _, t in batch_pairs[i][-4:]])
print(f'\ninput_text:\n{input_text}')
print(f'\nresult: {batch_targets[i]==batch_preds[i].strip(" ")}\t\ttarget: {batch_targets[i]}\t\tpred: {batch_preds[i]}')
acc = calc_acc(predictions, targets)
return acc
def _eval2save(args):
acc = _eval(args, args.eval_dl)
args.writer.add_scalar('eval_acc', acc, args.global_steps)
# judge to save
if acc >= args.best_eval_acc:
print(f'\nNew best model, new acc {acc:.4f} % >= previous acc {args.best_eval_acc:.4f} %')
args.best_eval_acc = acc
checkpoint_file = f'{args.ckpt_dir}{args.model_name}_{args.dataset}_linear_{args.visual_prefix_length}token_{args.ICL_examples_num}examples.pkl' # only save 1 checkpoint
torch.save(args.model.linear.state_dict(), checkpoint_file)
print(f'\nSave to {checkpoint_file}')
elif acc < args.best_eval_acc:
print(f'\ndo not save, best acc: {args.best_eval_acc:.4f}')
def _train(args):
print('Training...')
# 1.record: loss steps
args.writer = SummaryWriter(args.log_dir)
ls_sum = 0.0
args.global_steps = 0
# 2.train and evaluate
with tqdm(total=args.total_steps) as pbar:
for epoch in range(args.train_epoch):
args.epoch = epoch
for batch_idx, batch_data in enumerate(args.train_dl):
args.global_steps += 1
args.model.train()
batch_pairs, batch_targets = batch_data
ls = args.model(batch_pairs, batch_targets).loss
if args.use_gradient_accumulation:
ls /= args.accum_iter
ls.backward()
if args.use_gradient_accumulation:
if ((batch_idx + 1) % args.accum_iter == 0) or (batch_idx + 1 == len(args.train_dl)):
torch.nn.utils.clip_grad_norm_(args.model.parameters(), args.max_norm)
args.optimizer.step()
args.scheduler.step()
args.optimizer.zero_grad()
else:
torch.nn.utils.clip_grad_norm_(args.model.parameters(), args.max_norm)
args.optimizer.step()
args.scheduler.step()
args.optimizer.zero_grad()
ls_ = ls.item()
ls_sum += ls_
# 1) record
args.writer.add_scalar('train_ls', ls_sum / args.global_steps, args.global_steps)
pbar.set_description(f'ep: {epoch}, steps: {args.global_steps}, ls: {ls_:.4f}')
pbar.update(1)
# 2) evaluate and save
if args.do_eval and not args.global_steps % args.do_eval_steps:
_eval2save(args)
def _main(args):
# 1.check dir
check_dirs(dirs=[args.dataset_dir, args.log_dir, args.ckpt_dir])
# 2.random seed
set_seed(args.random_seed)
# 3.model and tokenizer
from transformers import AutoTokenizer, OPTForCausalLM
args.tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_fast=False)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load the model in half-precision to accelerate generation and optimize memory consumption on GPU
lm = OPTForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.float16, cache_dir=args.cache_dir)
# freeze large language model
print('\nFreeze LLM\n')
for param in lm.parameters():
param.requires_grad = False
args.dim_embedding = lm.config.hidden_size
kwargs_model = {'dim_clip': args.dim_clip, 'dim_embedding': args.dim_embedding,
'visual_prefix_length': args.visual_prefix_length, 'device': args.device}
args.model = GEMELModel(lm=lm, tokenizer=args.tokenizer, **kwargs_model).to(args.device)
# model for calculating similarity
args.train_embed = get_embed(args.ment_embed_file)
args.roberta_tokenizer = AutoTokenizer.from_pretrained(args.simcse_model)
args.roberta_model = AutoModel.from_pretrained(args.simcse_model, cache_dir=args.cache_dir).to(args.device)
# 4.data
# train dataset for calculating ICL similarity
args.ICL_ds = GEMELDataset(args.data_file['train'], tokenizer=None, img_feat=args.img_feat)
args.kwargs_ds = {'train_ds': args.ICL_ds, 'ICL_examples_num': args.ICL_examples_num, 'img_feat': args.img_feat, 'device': args.device,
'train_embed': args.train_embed, 'roberta_tokenizer': args.roberta_tokenizer, 'roberta_model': args.roberta_model}
train_ds = GEMELDataset(args.data_file['train'], args.tokenizer, train_flag=True, **args.kwargs_ds) # train_flag: exclude same training example
dev_ds = GEMELDataset(args.data_file['dev'], args.tokenizer, **args.kwargs_ds)
print(f'\ntrain data num: {len(train_ds)} dev data num: {len(dev_ds)}')
args.train_dl = DataLoader(dataset=train_ds, batch_size=args.train_bs, collate_fn=train_ds.collate_fn, shuffle=True)
args.eval_dl = DataLoader(dataset=dev_ds, batch_size=args.eval_bs, collate_fn=dev_ds.collate_fn, shuffle=False)
args.total_steps = args.train_epoch * len(args.train_dl)
# prefix tree
args.trie = load_prefix_tree(args.trie_file, args.tokenizer.eos_token_id) if args.use_prefix_tree else None
# 5.train
args.optimizer, args.scheduler = train_configure(args)
args.best_eval_acc = float('-inf')
_train(args)
_eval2save(args)
# 6.inference test
if args.do_test: _test(args)
if __name__ == '__main__':
args = params.get_args()
print(args)
_main(args)