-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAutoPM3_main.py
432 lines (346 loc) · 18 KB
/
AutoPM3_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from langchain_community.llms import Ollama
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain import PromptTemplate
from langchain.globals import set_verbose, set_debug
import requests
from bioc import biocxml
# Import the following stuff for implementing custom retrievers
from typing import List, Dict
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from table_functions import table_extraction_n_sqlQA
from utils import extractTablesFromXML
set_debug(False)
# the second item is the number of returned chunks
# the third item is the abbreviated protein change notation
retriever_OK = [ False, 0, None ]
import textwrap
import os
import time
from argparse import ArgumentParser
import sys
import glob
import json
import re
import tempfile
os.environ['CURL_CA_BUNDLE'] = '' # Fix SSL error for Mutalyzer3
PROTEIN_MAPPING_FILE = './protein.txt'
# enum types
VARIANT_QUERY = 0
INTRANS_QUERY = 1
C_VARIANT = 0 # c.123A>G
P_VARIANT = 1 # protein change
from func_timeout import func_set_timeout
import func_timeout
class VariantSpecificRetriever(BaseRetriever):
documents: List[Document]
k: int
protein_map: Dict[str, str]
# Assumes "query" to be the target variant (in HGVS notation)
def _get_relevant_documents(self, query):
variant = query
# Remove the contig name (NM_xxxxxx)
target_var = variant.split(":")[-1]
# Remove c.() from the variant notation (by default is c.(123A>G) or c.123A>G)
var_dna = target_var.replace('c.', '').replace('(', '').replace(')', '')
# Translate the mutation to protein change using Mutalyzer
var_protein = None
var_protein_short = None
try:
r = requests.get(f'https://mutalyzer.nl/api/normalize/{variant}?only_variants=false')
j = r.json()
returned_prot = j['protein']['description'].split(':')[-1]
# Remove the p.()
m = re.match(r'p.\((.*)\)', returned_prot)
prot = m.group(1)
if len(prot) < 5: # Too short (sometimes Mutalyzer returns something like p.(=) )
raise Exception(f'Protein change too short: {returned_prot}')
# Sometimes the protein mutation is like Cys1447Glnfs29 but some papers write as Cys1447fs,
# so we remove the whole Glnfs part
var_protein = re.sub(r'[A-Za-z]{3}fs.*', '', prot)
# Convert the protein to short form ( -> )
var_protein_short = var_protein
for (k,v) in self.protein_map.items():
var_protein_short = var_protein_short.replace(k, v)
# Remove X and * (meaning Terminal) from the protein notation, since we don't know the paper is using which one
var_protein = var_protein.replace('X', '').replace('*', '')
var_protein_short = var_protein_short.replace('X', '').replace('*', '')
#print(f'Protein : {var_protein} ({var_protein_short})')
except KeyError as e:
#print('Protein: [ERROR] Not found by Mutalyzer')
pass
except Exception as e:
#print(f'Protein : [ERROR] {e}')
pass
# Done with conversion. Now do the retrieval (= regex matching)
retrieved_chunks = []
# Construct the regex pattern for DNA:
# 1. 123A>G becomes \s*123\s*A>G (allow spaces around numbers)
# 2. Further becomes \s*123\s*123A\s*>\s*G (allow spaces around > )
dna_pattern = re.sub('([0-9]+)', '\\\\s*\\1\\\\s*', re.escape(var_dna))
dna_pattern = re.sub('(>)', '\\\\s*\\1\\\\s*', dna_pattern)
dna_matcher = re.compile(dna_pattern, re.IGNORECASE)
for chunk in self.documents:
# Re-encode the text to get rid of those annoying Unicode \x80\x89 (whitespaces)
text = chunk.page_content.encode('utf-8').decode('unicode_escape').encode('latin-1').decode('utf-8')
if dna_matcher.search(text) or \
var_protein and chunk.page_content.find(var_protein) >= 0 or \
var_protein_short and chunk.page_content.find(var_protein_short) >= 0:
retrieved_chunks += [ chunk ]
# If neither DNA nor protein change could retrieve anything,
# we resort to matching by positions only...
if not retrieved_chunks:
dig_dna = re.findall(r'\d+', var_dna)
dig_protein = re.findall(r'\d+', var_protein) if var_protein else None
dig_dna_matcher = re.compile('\D' + str(dig_dna[0]) + '\D') if dig_dna else None
dig_protein_matcher = re.compile('\D' + str(dig_protein[0]) + '\D') if dig_protein else None
for chunk in self.documents:
if dig_dna_matcher and dig_dna_matcher.search(chunk.page_content) or \
dig_protein_matcher and dig_protein_matcher.search(chunk.page_content):
retrieved_chunks += [ chunk ]
if len(retrieved_chunks) > 0:
retriever_OK[0] = True
retriever_OK[1] = len(retrieved_chunks)
retriever_OK[2] = var_protein_short
return retrieved_chunks[:self.k]
# Load the protein abbreviatioon map from a file
def load_protein_map(filename):
with open(filename, 'r') as f:
lines = f.read().splitlines()
m = { x.split()[0]: x.split()[1] for x in lines }
return m
# Load paper from XML file
def load_xml_paper(filename, filter_tables=False):
out_doc = ''
with open(filename, 'r', encoding='utf8') as fp: # better use utf8
collection = biocxml.load(fp)
document = collection.documents[0]
for passage in document.passages:
section_type = passage.infons.get('section_type', '').upper()
if filter_tables and section_type in [ 'TABLE', 'REF', 'COMP_INT', 'AUTH_CONT', 'SUPPL' ]:
pass # filter away this section
else:
out_doc += passage.text + '\n'
return out_doc
template_PM3_answer_chain_llama3 = """\
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a specialist in biogenetics, answer only based on user's input!<|eot_id|>
<|start_header_id|>user<|end_header_id|>
The variant in HGVS format is {question}, don't include this in your answer if condisering compound het variants.
Given the context: '{context}' and target variant {c_variant}. Answer the question: {proposedQuestion}<|eot_id|>.
<|start_header_id|>assistant<|end_header_id|>\n
"""
def split_docs(documents,chunk_size=1500,chunk_overlap=100):
# Responsible for splitting the documents into several chunks
# Initializing the RecursiveCharacterTextSplitter with
# chunk_size and chunk_overlap
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
# Splitting the documents into chunks
chunks = text_splitter.split_documents(documents=documents)
# returning the document chunks
return chunks
# Creating the chain for Question Answering
def load_qa_chain(retriever, llm, prompt):
return RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever, # here we are using the vectorstore as a retriever
chain_type="stuff",
return_source_documents=True, # including source documents in output
chain_type_kwargs={'prompt': prompt, "verbose": False} # customizing the prompt
)
# Prettifying the response
@func_set_timeout(300)
def get_answers_PM3(query, chain):
# Getting response from chain
input_dict = {'query': query}
response = chain(input_dict)
return response
def loadTextModel(model_name):
print("Loading model",model_name)
if "llama3" in model_name:
llm_a = Ollama(model=model_name,temperature=0.0, top_p = 0.9, stop=["<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "<|reserved_special_token"])
elif model_name == "phi3":
llm_a = Ollama(model=model_name,temperature=0.0, top_p = 0.9, stop=["<|user|>","<|assistant|>","<|system|>","<|end|>","<|endoftext|>", "<|reserved_special_token"])
else:
llm_a = Ollama(model=model_name,temperature=0.0, top_p = 0.9)
print("Loading model DONE")
return llm_a
def main():
parser = ArgumentParser(description='AutoPM3')
parser.add_argument(
'--model_name_text',
help="llm used for answering generated questions",
required=False,
default='llama3_loraFT-8b-f16',
)
parser.add_argument(
'--model_name_table',
help="llm used for table queries",
required=False,
default='sqlcoder-7b-Mistral-7B-Instruct-v0.2-slerp.Q8_0',
)
parser.add_argument(
'--query_variant',
help="query variant in HGVS format",
required=True,
)
parser.add_argument(
'--paper_path',
help="paper_path of the query literature",
required=True,
)
# print help message if no argument input
if len(sys.argv) <= 1 or sys.argv[1] == "-h" or sys.argv[1] == "--help":
parser.print_help(sys.stderr)
sys.exit(0)
args = parser.parse_args()
results = query_variant_in_paper_xml(args.query_variant,args.paper_path,args.model_name_table,args.model_name_text)
print(results)
def query_variant_in_paper_xml(query_variant, xml_path, model_name_table, model_name_text):
llm_a = loadTextModel(model_name_text)
llm_table = [Ollama(model=model_name_table, temperature=0.0, top_p=0.9) ]
# Read protein abbreviation table
protein_map = load_protein_map(PROTEIN_MAPPING_FILE)
# check if the query variant is in the correct format (TODO)
c_variant = query_variant.split(":")[-1]
# Check if the paper (XML, PDF) exists
xml_fn =xml_path
if not os.path.exists(xml_fn):
print('XML paper not found. Abort.')
sys.exit(-1)
# Load the XML paper and filter away tables and useless sections,
# then split into chunks
doc_filtered = load_xml_paper(xml_fn, filter_tables=True)
doc_wrapper = [ Document(page_content = doc_filtered, metadata = {'source': 'local'}) ]
doc_chunks = split_docs(doc_wrapper)
# Try our custom retriever
variant_retriever = VariantSpecificRetriever(documents=doc_chunks, k=5, protein_map=protein_map)
variant_hgvs = query_variant
try:
r = requests.get(f'https://mutalyzer.nl/api/normalize/{query_variant}?only_variants=false')
j = r.json()
protein = j['protein']['description'].split(':')[-1]
if protein == 'p.(=)':
raise Exception('invalid notation')
c_protein_id = re.findall(r"\d+",protein)
except Exception as e:
protein = None
protein_short = None
##########################
# Do table queries first #
##########################
table_src_contains_variant = False
table_query_results = []
# Find all the table CSV files for this PMID
#relevant_tables = [ f for f in table_csv_files if str(c_pmid) in f ]
relevant_tables = extractTablesFromXML(xml_fn)
c_variant_id = None
c_max = 0
c_tmp_digit = re.findall(r"\d+",c_variant)
for c_digit in c_tmp_digit:
if len(c_digit) > c_max: # 3
c_variant_id = c_digit
c_max = len(c_digit)
if relevant_tables:
variant_alias = [c_variant_id, c_protein_id[0]] if protein is not None and len(c_protein_id) > 0 else [c_variant_id]
csv_files = []
csv_filenames = []
# Write the extracted tables to temporary CSV files
for table in relevant_tables:
tmpfile = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=True)
csv_files.append(tmpfile)
csv_filenames.append(tmpfile.name)
#print("temp tables",tmpfile.name)
table.to_csv(tmpfile.name,index=False)
table_query_return = table_extraction_n_sqlQA(csv_filenames, model_name_table,
query_variant_list=variant_alias, llm=llm_table, llm_qa=llm_table, show_errors=False)
# Close and delete the temp files
for tmpfile in csv_files:
tmpfile.close()
if table_query_return is None:
pass
#print('[ERROR] Something went wrong with the tables.')
else:
( table_query_results, table_src_contains_variant ) = table_query_return[:2]
# Collect the answer candidates from the returned results
table_results_plaintext = []
for c_cmd in table_query_results:
for c_answer in c_cmd[1]:
if not isinstance(c_answer, tuple):
try:
table_results_plaintext.append(c_answer['plainText'])
except Exception as e:
pass
else:
table_results_plaintext = ["No table found"]
###########################
# Now do the text queries #
###########################
# We use "protein" instead of "c_protein_id[0]" for text.
# - "protein": The protein change returned by Mutalzyer
# - "c_protein_id[0]": Only the digits in "protein"
variant_alias = [c_variant, protein] if protein is not None and len(c_protein_id) > 0 else [c_variant]
text_variant_hit = False
text_intrans_list = []
text_src_contains_variant = False
text_variant_answer = ""
MAX_RETRIES = 1 # number of retries before giving up
PM3_answer_prompt = PromptTemplate.from_template(template_PM3_answer_chain_llama3)
for c_index, current_variant in enumerate(variant_alias):
for query_type in range(2): # variant query, in-trans query
retriever_OK[0] = False
if query_type == VARIANT_QUERY:
my_predefined_query = f"Does the paper mention the queried variant ({current_variant}) and what is the surrounding context?" + f"""if such variant is existed, say *YES* at first otherwise say *None* (focus on variant: {current_variant})"""
elif query_type == INTRANS_QUERY:
my_predefined_query = f"If {current_variant} is compound heterozygous with another variant, name it; if {current_variant} is homozygous, say homozygous; if no related variant is found, say *None*. List all results seperated by comma and wrap the answers by *."""
num_retries = 0
query_success = False
while not query_success and num_retries <= MAX_RETRIES:
try:
PM3_answer_chain = load_qa_chain(variant_retriever, llm_a, PM3_answer_prompt.partial(proposedQuestion=my_predefined_query, c_variant=current_variant))
cur_answers_all = get_answers_PM3(variant_hgvs, PM3_answer_chain)
if not retriever_OK[0]:
break
else:
text_src_contains_variant = True
protein_short = retriever_OK[2]
cur_answers = cur_answers_all['result']
query_success = True
except func_timeout.exceptions.FunctionTimedOut:
del llm_a;
llm_a = loadTextModel(model_name_text)
num_retries += 1
if not query_success:
continue
# Wrapping the text for better output in Jupyter Notebook
wrapped_text = textwrap.fill(cur_answers_all['result'], width=100)
if query_type == VARIANT_QUERY:
source_doc = cur_answers_all['source_documents']
c_variant_inRetrieved = False
for page in source_doc:
c_rsids = re.findall(current_variant if c_index == C_VARIANT else c_protein_id[0], page.page_content)
if len(c_rsids) > 0:
c_variant_inRetrieved = True
if 'yes' in cur_answers.lower():
text_variant_hit = True
if c_index == C_VARIANT:
text_variant_answer = "\n- **[DNA match result]**:"+cur_answers
else:
text_variant_answer += "\n- **[Protein match result]**:"+cur_answers
elif text_variant_answer == "":
text_variant_answer = "\n- **Variant not found in text part!**"
elif query_type == INTRANS_QUERY:
if "none" not in cur_answers.lower() or "contain" in cur_answers.lower():
text_intrans_list.append(cur_answers)
#text_intrans_list.append(cur_answers)
table_results_plaintext_output = [str(xx).strip("\n") + "\n\n" for xx in table_results_plaintext]
#print(f'# Output Summary: \n \n## **Query Variant and Relative Intrans-variant/Genotype Found in PaperTables**: \n{"".join([str(xx) for xx in table_results_plaintext_output])} \n \n## **Query Variant Found in PaperText**: \n- {text_variant_answer if text_variant_hit != "" else "Variant not found in text part!"} \n \n## **Query Variant\'s Intrans-variant Found in PaperText**: \n{text_intrans_list if text_variant_answer != "Variant not found in text part!" and text_intrans_list else "None!"}')
results = f'# Output Summary: \n \n## **Query Variant and Relative Intrans-variant/Genotype Found in PaperTables**: \n{"".join([str(xx) for xx in table_results_plaintext_output])} \n \n## **Query Variant Found in PaperText**: \n- {text_variant_answer if text_variant_hit != "" else "Variant not found in text part!"} \n \n## **Query Variant\'s Intrans-variant Found in PaperText**: \n{text_intrans_list if text_variant_answer != "Variant not found in text part!" and text_intrans_list else "None!"}'
return results
if __name__ == "__main__":
main()