-
Notifications
You must be signed in to change notification settings - Fork 1
/
Dist_no_pri_run4_1.log
3328 lines (3328 loc) · 507 KB
/
Dist_no_pri_run4_1.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=64, epoch=10000, gpu=3, item_density_threshold=0.01, item_threshold=30, layer_size=[64, 64, 64], lmbda=1, local_batch_size=1, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=128, verbose=10, weights_path='model/')
INFO:root:Epoch 99 [11.3s + 11.8s]: train==[692.29901=692.27332 + 0.02511], recall=[0.00812, 0.01585], precision=[0.00314, 0.00299], hit=[0.05978, 0.10610], ndcg=[0.02165, 0.03201]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 199 [9.1s + 11.4s]: train==[691.54132=691.51550 + 0.02510], recall=[0.01148, 0.02071], precision=[0.00417, 0.00380], hit=[0.07810, 0.13393], ndcg=[0.03031, 0.04300]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 299 [9.3s + 11.4s]: train==[690.66284=690.63721 + 0.02511], recall=[0.01743, 0.02962], precision=[0.00594, 0.00513], hit=[0.10880, 0.17720], ndcg=[0.04293, 0.05851]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 399 [11.0s + 10.5s]: train==[689.80817=689.78320 + 0.02511], recall=[0.02746, 0.04309], precision=[0.00881, 0.00722], hit=[0.15583, 0.23483], ndcg=[0.06301, 0.08230]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 499 [9.4s + 11.6s]: train==[688.72418=688.69916 + 0.02511], recall=[0.04104, 0.06171], precision=[0.01305, 0.01000], hit=[0.21777, 0.30215], ndcg=[0.09019, 0.11264]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 599 [9.5s + 11.4s]: train==[687.65851=687.63300 + 0.02511], recall=[0.05790, 0.08324], precision=[0.01803, 0.01325], hit=[0.28169, 0.37307], ndcg=[0.12012, 0.14644]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 699 [9.5s + 11.5s]: train==[686.47797=686.45319 + 0.02511], recall=[0.07877, 0.10636], precision=[0.02400, 0.01698], hit=[0.35422, 0.43824], ndcg=[0.15131, 0.17993]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 799 [9.4s + 12.4s]: train==[685.26208=685.23724 + 0.02511], recall=[0.09629, 0.13045], precision=[0.03027, 0.02094], hit=[0.40952, 0.49713], ndcg=[0.17742, 0.20901]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 899 [11.4s + 11.5s]: train==[683.64197=683.61621 + 0.02511], recall=[0.11575, 0.15496], precision=[0.03653, 0.02485], hit=[0.46050, 0.55009], ndcg=[0.19896, 0.23358]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 999 [9.5s + 10.8s]: train==[681.95374=681.92798 + 0.02511], recall=[0.13324, 0.17835], precision=[0.04233, 0.02901], hit=[0.50395, 0.59354], ndcg=[0.21455, 0.25297]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1099 [9.6s + 11.1s]: train==[680.05115=680.02509 + 0.02511], recall=[0.14499, 0.20229], precision=[0.04689, 0.03303], hit=[0.53016, 0.63662], ndcg=[0.22472, 0.27042]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1199 [9.6s + 11.3s]: train==[677.89075=677.86615 + 0.02511], recall=[0.15568, 0.22125], precision=[0.05087, 0.03621], hit=[0.55099, 0.66032], ndcg=[0.23068, 0.28056]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1299 [9.5s + 12.6s]: train==[675.40344=675.37848 + 0.02510], recall=[0.16262, 0.23466], precision=[0.05336, 0.03874], hit=[0.56373, 0.67684], ndcg=[0.23314, 0.28734]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1399 [9.4s + 11.0s]: train==[672.71600=672.69141 + 0.02511], recall=[0.16753, 0.24328], precision=[0.05500, 0.04044], hit=[0.56786, 0.68815], ndcg=[0.23508, 0.29225]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1499 [9.9s + 12.2s]: train==[669.64270=669.61829 + 0.02510], recall=[0.17106, 0.24959], precision=[0.05625, 0.04163], hit=[0.57289, 0.69551], ndcg=[0.23735, 0.29612]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1599 [9.4s + 11.9s]: train==[666.25555=666.23047 + 0.02510], recall=[0.17408, 0.25419], precision=[0.05707, 0.04263], hit=[0.57917, 0.70090], ndcg=[0.23904, 0.29906]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1699 [10.1s + 11.9s]: train==[662.62311=662.59851 + 0.02510], recall=[0.17594, 0.25654], precision=[0.05765, 0.04315], hit=[0.58205, 0.70431], ndcg=[0.23997, 0.30062]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1799 [9.6s + 11.3s]: train==[658.74969=658.72449 + 0.02510], recall=[0.17735, 0.25849], precision=[0.05807, 0.04360], hit=[0.58546, 0.70682], ndcg=[0.24020, 0.30144]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1899 [11.5s + 13.7s]: train==[654.33618=654.31128 + 0.02510], recall=[0.17776, 0.25988], precision=[0.05818, 0.04386], hit=[0.58348, 0.70969], ndcg=[0.24010, 0.30232]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1999 [9.6s + 12.4s]: train==[650.15839=650.13324 + 0.02510], recall=[0.17948, 0.26052], precision=[0.05840, 0.04406], hit=[0.58707, 0.71023], ndcg=[0.24096, 0.30290]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2099 [11.4s + 13.2s]: train==[645.33514=645.31036 + 0.02510], recall=[0.17963, 0.26161], precision=[0.05839, 0.04424], hit=[0.58779, 0.71041], ndcg=[0.24089, 0.30347]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2199 [10.6s + 12.6s]: train==[640.68829=640.66315 + 0.02510], recall=[0.18020, 0.26185], precision=[0.05867, 0.04435], hit=[0.58923, 0.70987], ndcg=[0.24164, 0.30373]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2299 [10.0s + 13.9s]: train==[635.07544=635.05011 + 0.02510], recall=[0.18077, 0.26213], precision=[0.05882, 0.04437], hit=[0.59120, 0.70987], ndcg=[0.24261, 0.30436]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2399 [10.2s + 12.0s]: train==[630.06775=630.04297 + 0.02510], recall=[0.18130, 0.26156], precision=[0.05893, 0.04437], hit=[0.59210, 0.70862], ndcg=[0.24271, 0.30404]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2499 [13.4s + 14.3s]: train==[624.19043=624.16492 + 0.02510], recall=[0.18136, 0.26298], precision=[0.05902, 0.04457], hit=[0.59174, 0.70987], ndcg=[0.24246, 0.30441]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2599 [11.3s + 13.4s]: train==[618.95740=618.93146 + 0.02510], recall=[0.18156, 0.26351], precision=[0.05909, 0.04471], hit=[0.59210, 0.70969], ndcg=[0.24252, 0.30461]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2699 [10.6s + 13.3s]: train==[613.17352=613.14874 + 0.02510], recall=[0.18185, 0.26339], precision=[0.05918, 0.04470], hit=[0.59336, 0.70898], ndcg=[0.24332, 0.30504]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2799 [11.0s + 13.3s]: train==[606.61371=606.58960 + 0.02510], recall=[0.18234, 0.26395], precision=[0.05934, 0.04471], hit=[0.59515, 0.70916], ndcg=[0.24363, 0.30508]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2899 [11.3s + 14.1s]: train==[600.35370=600.32874 + 0.02510], recall=[0.18235, 0.26452], precision=[0.05934, 0.04474], hit=[0.59425, 0.71023], ndcg=[0.24367, 0.30537]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2999 [11.4s + 13.5s]: train==[593.71582=593.69189 + 0.02510], recall=[0.18256, 0.26408], precision=[0.05944, 0.04476], hit=[0.59461, 0.71077], ndcg=[0.24376, 0.30532]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3099 [11.3s + 13.6s]: train==[586.49634=586.47089 + 0.02510], recall=[0.18272, 0.26450], precision=[0.05959, 0.04479], hit=[0.59569, 0.71113], ndcg=[0.24405, 0.30555]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3199 [13.3s + 13.9s]: train==[580.86188=580.83716 + 0.02510], recall=[0.18281, 0.26539], precision=[0.05942, 0.04490], hit=[0.59479, 0.71293], ndcg=[0.24342, 0.30572]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3299 [13.2s + 13.9s]: train==[574.01080=573.98529 + 0.02510], recall=[0.18296, 0.26522], precision=[0.05948, 0.04487], hit=[0.59497, 0.71329], ndcg=[0.24365, 0.30578]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3399 [12.9s + 14.4s]: train==[566.81903=566.79358 + 0.02510], recall=[0.18237, 0.26550], precision=[0.05945, 0.04491], hit=[0.59461, 0.71311], ndcg=[0.24290, 0.30524]
INFO:root:Epoch 3499 [10.9s + 14.5s]: train==[560.06531=560.04004 + 0.02510], recall=[0.18266, 0.26628], precision=[0.05950, 0.04498], hit=[0.59515, 0.71400], ndcg=[0.24318, 0.30572]
INFO:root:Epoch 3599 [10.7s + 13.7s]: train==[552.82904=552.80371 + 0.02510], recall=[0.18282, 0.26529], precision=[0.05960, 0.04495], hit=[0.59605, 0.71221], ndcg=[0.24362, 0.30559]
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=128, verbose=10, weights_path='model/')
INFO:root:Epoch 9 [19.6s + 12.5s]: train==[692.07312=692.05768 + 0.01521], recall=[0.00630, 0.01355], precision=[0.00246, 0.00261], hit=[0.04758, 0.09372], ndcg=[0.01595, 0.02618]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [19.5s + 12.7s]: train==[691.50031=691.48431 + 0.01521], recall=[0.00787, 0.01682], precision=[0.00305, 0.00316], hit=[0.05871, 0.11364], ndcg=[0.02002, 0.03216]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 29 [20.0s + 12.8s]: train==[691.29987=691.28406 + 0.01521], recall=[0.00884, 0.01762], precision=[0.00328, 0.00333], hit=[0.06266, 0.11867], ndcg=[0.02162, 0.03408]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [19.6s + 12.5s]: train==[691.00836=690.99310 + 0.01521], recall=[0.00938, 0.01887], precision=[0.00353, 0.00351], hit=[0.06715, 0.12442], ndcg=[0.02320, 0.03595]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 49 [19.6s + 13.1s]: train==[690.83234=690.81726 + 0.01521], recall=[0.01046, 0.01999], precision=[0.00387, 0.00368], hit=[0.07343, 0.13016], ndcg=[0.02548, 0.03827]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 59 [20.0s + 12.6s]: train==[690.57629=690.56030 + 0.01521], recall=[0.01158, 0.02162], precision=[0.00422, 0.00393], hit=[0.07953, 0.13806], ndcg=[0.02771, 0.04097]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 69 [19.8s + 12.5s]: train==[690.40491=690.39014 + 0.01521], recall=[0.01242, 0.02386], precision=[0.00456, 0.00429], hit=[0.08510, 0.14955], ndcg=[0.03019, 0.04475]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 79 [16.3s + 13.4s]: train==[690.09302=690.07806 + 0.01521], recall=[0.01404, 0.02657], precision=[0.00499, 0.00464], hit=[0.09318, 0.16158], ndcg=[0.03374, 0.04931]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 89 [19.7s + 13.4s]: train==[689.78320=689.76807 + 0.01521], recall=[0.01596, 0.02956], precision=[0.00554, 0.00511], hit=[0.10269, 0.17558], ndcg=[0.03753, 0.05427]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 99 [19.4s + 12.3s]: train==[689.47125=689.45636 + 0.01521], recall=[0.01704, 0.03138], precision=[0.00596, 0.00543], hit=[0.10969, 0.18492], ndcg=[0.04090, 0.05844]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 109 [19.9s + 12.9s]: train==[689.18909=689.17340 + 0.01521], recall=[0.01996, 0.03504], precision=[0.00676, 0.00596], hit=[0.12424, 0.20054], ndcg=[0.04642, 0.06463]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 119 [19.7s + 12.9s]: train==[688.73340=688.71838 + 0.01521], recall=[0.02379, 0.03951], precision=[0.00774, 0.00665], hit=[0.14039, 0.21849], ndcg=[0.05328, 0.07235]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 129 [20.2s + 13.4s]: train==[688.41833=688.40234 + 0.01521], recall=[0.02708, 0.04328], precision=[0.00870, 0.00732], hit=[0.15548, 0.23842], ndcg=[0.06033, 0.08066]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 139 [18.9s + 13.3s]: train==[687.88086=687.86621 + 0.01521], recall=[0.03057, 0.04894], precision=[0.00980, 0.00820], hit=[0.17181, 0.25961], ndcg=[0.06826, 0.09031]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 149 [19.6s + 13.2s]: train==[687.37933=687.36469 + 0.01521], recall=[0.03460, 0.05537], precision=[0.01122, 0.00923], hit=[0.19282, 0.28654], ndcg=[0.07793, 0.10191]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 159 [19.6s + 13.4s]: train==[686.94269=686.92719 + 0.01521], recall=[0.03989, 0.06232], precision=[0.01263, 0.01038], hit=[0.21454, 0.31329], ndcg=[0.08819, 0.11445]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 169 [20.3s + 12.8s]: train==[686.27753=686.26202 + 0.01521], recall=[0.04581, 0.07047], precision=[0.01464, 0.01161], hit=[0.24237, 0.34255], ndcg=[0.10032, 0.12767]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 179 [19.4s + 13.6s]: train==[685.76123=685.74506 + 0.01521], recall=[0.05185, 0.07956], precision=[0.01665, 0.01278], hit=[0.26894, 0.36804], ndcg=[0.11322, 0.14133]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 189 [20.5s + 13.7s]: train==[685.00177=684.98706 + 0.01521], recall=[0.05899, 0.08804], precision=[0.01873, 0.01407], hit=[0.29569, 0.39138], ndcg=[0.12639, 0.15511]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 199 [20.1s + 13.4s]: train==[684.17511=684.16046 + 0.01521], recall=[0.06607, 0.09648], precision=[0.02083, 0.01551], hit=[0.32136, 0.41688], ndcg=[0.13911, 0.16910]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 209 [19.8s + 13.3s]: train==[683.31036=683.29535 + 0.01521], recall=[0.07266, 0.10695], precision=[0.02300, 0.01726], hit=[0.34381, 0.44722], ndcg=[0.15065, 0.18381]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 219 [19.9s + 13.3s]: train==[682.56976=682.55426 + 0.01521], recall=[0.07956, 0.11618], precision=[0.02542, 0.01875], hit=[0.36553, 0.47145], ndcg=[0.16381, 0.19834]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 229 [19.8s + 13.4s]: train==[681.47498=681.45892 + 0.01521], recall=[0.08810, 0.12765], precision=[0.02825, 0.02064], hit=[0.39443, 0.49964], ndcg=[0.17460, 0.21071]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 239 [19.6s + 13.5s]: train==[680.46033=680.44531 + 0.01521], recall=[0.09554, 0.13784], precision=[0.03090, 0.02257], hit=[0.41706, 0.52711], ndcg=[0.18377, 0.22237]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 249 [19.7s + 13.3s]: train==[679.02313=679.00769 + 0.01521], recall=[0.10428, 0.14868], precision=[0.03349, 0.02444], hit=[0.43914, 0.55027], ndcg=[0.19207, 0.23246]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 259 [19.5s + 13.6s]: train==[677.85895=677.84381 + 0.01521], recall=[0.11187, 0.16001], precision=[0.03618, 0.02633], hit=[0.46104, 0.57343], ndcg=[0.19952, 0.24211]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 269 [16.1s + 12.8s]: train==[676.38403=676.36884 + 0.01521], recall=[0.12007, 0.17067], precision=[0.03890, 0.02826], hit=[0.48420, 0.59372], ndcg=[0.20696, 0.25110]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 279 [14.5s + 13.3s]: train==[674.83130=674.81525 + 0.01521], recall=[0.12713, 0.18207], precision=[0.04142, 0.03020], hit=[0.50233, 0.61131], ndcg=[0.21263, 0.25861]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 289 [13.7s + 12.6s]: train==[673.20227=673.18787 + 0.01521], recall=[0.13254, 0.19202], precision=[0.04353, 0.03200], hit=[0.51508, 0.62531], ndcg=[0.21612, 0.26472]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 299 [14.3s + 12.7s]: train==[671.27679=671.26086 + 0.01521], recall=[0.13878, 0.20336], precision=[0.04561, 0.03379], hit=[0.52819, 0.63950], ndcg=[0.21881, 0.26980]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 309 [14.2s + 12.5s]: train==[669.25195=669.23645 + 0.01521], recall=[0.14497, 0.21247], precision=[0.04772, 0.03549], hit=[0.54075, 0.65027], ndcg=[0.22195, 0.27456]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 319 [14.1s + 13.5s]: train==[667.15857=667.14380 + 0.01521], recall=[0.14973, 0.22019], precision=[0.04961, 0.03696], hit=[0.55009, 0.66104], ndcg=[0.22478, 0.27923]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 329 [14.1s + 13.1s]: train==[665.17322=665.15820 + 0.01521], recall=[0.15551, 0.22655], precision=[0.05154, 0.03807], hit=[0.55835, 0.66912], ndcg=[0.22824, 0.28297]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 339 [13.9s + 12.2s]: train==[662.61853=662.60339 + 0.01521], recall=[0.15923, 0.23253], precision=[0.05293, 0.03918], hit=[0.56553, 0.67702], ndcg=[0.22991, 0.28604]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 349 [13.9s + 13.6s]: train==[660.30969=660.29510 + 0.01521], recall=[0.16218, 0.23748], precision=[0.05425, 0.04008], hit=[0.56930, 0.68312], ndcg=[0.23134, 0.28841]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 359 [14.3s + 13.2s]: train==[657.76221=657.74725 + 0.01521], recall=[0.16543, 0.24200], precision=[0.05518, 0.04086], hit=[0.57235, 0.68869], ndcg=[0.23283, 0.29109]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 369 [13.7s + 12.4s]: train==[654.85510=654.84058 + 0.01521], recall=[0.16773, 0.24459], precision=[0.05601, 0.04137], hit=[0.57630, 0.69102], ndcg=[0.23469, 0.29295]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 379 [14.0s + 13.2s]: train==[651.76031=651.74512 + 0.01521], recall=[0.17010, 0.24798], precision=[0.05682, 0.04197], hit=[0.58061, 0.69551], ndcg=[0.23572, 0.29454]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 389 [13.9s + 13.2s]: train==[648.57941=648.56403 + 0.01521], recall=[0.17159, 0.24980], precision=[0.05732, 0.04243], hit=[0.58133, 0.69731], ndcg=[0.23623, 0.29556]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 399 [14.8s + 13.9s]: train==[645.61365=645.59857 + 0.01521], recall=[0.17332, 0.25196], precision=[0.05767, 0.04287], hit=[0.58366, 0.70018], ndcg=[0.23680, 0.29687]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 409 [15.3s + 12.1s]: train==[642.17651=642.16113 + 0.01521], recall=[0.17510, 0.25336], precision=[0.05817, 0.04323], hit=[0.58618, 0.70072], ndcg=[0.23769, 0.29759]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 419 [15.0s + 12.9s]: train==[638.76862=638.75366 + 0.01521], recall=[0.17600, 0.25513], precision=[0.05856, 0.04358], hit=[0.58779, 0.70215], ndcg=[0.23835, 0.29851]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 429 [14.5s + 13.2s]: train==[635.19458=635.17993 + 0.01521], recall=[0.17708, 0.25625], precision=[0.05884, 0.04379], hit=[0.58977, 0.70323], ndcg=[0.23905, 0.29912]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 439 [15.4s + 12.2s]: train==[631.15143=631.13635 + 0.01521], recall=[0.17751, 0.25686], precision=[0.05896, 0.04403], hit=[0.58977, 0.70233], ndcg=[0.23931, 0.29954]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 449 [14.5s + 12.4s]: train==[627.60413=627.58923 + 0.01521], recall=[0.17771, 0.25760], precision=[0.05913, 0.04420], hit=[0.59084, 0.70233], ndcg=[0.23960, 0.29990]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 459 [14.5s + 11.8s]: train==[623.39880=623.38330 + 0.01521], recall=[0.17813, 0.25856], precision=[0.05922, 0.04439], hit=[0.59120, 0.70413], ndcg=[0.24011, 0.30081]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 469 [13.8s + 12.1s]: train==[619.82935=619.81403 + 0.01521], recall=[0.17858, 0.25863], precision=[0.05936, 0.04443], hit=[0.59264, 0.70377], ndcg=[0.24068, 0.30109]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=128, verbose=10, weights_path='model/')
INFO:root:Epoch 9 [13.9s + 12.8s]: train==[692.01849=692.00409 + 0.01521], recall=[0.00798, 0.01549], precision=[0.00292, 0.00282], hit=[0.05458, 0.10233], ndcg=[0.01881, 0.02916]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [14.3s + 13.8s]: train==[689.50537=689.49005 + 0.01521], recall=[0.01751, 0.03052], precision=[0.00592, 0.00535], hit=[0.10808, 0.18079], ndcg=[0.04095, 0.05801]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 29 [14.6s + 13.8s]: train==[683.40918=683.39362 + 0.01521], recall=[0.06799, 0.09649], precision=[0.02257, 0.01621], hit=[0.33501, 0.42837], ndcg=[0.14887, 0.17816]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [13.6s + 12.9s]: train==[668.25677=668.24170 + 0.01521], recall=[0.13421, 0.19694], precision=[0.04443, 0.03345], hit=[0.51741, 0.63914], ndcg=[0.21927, 0.27220]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 49 [13.9s + 12.6s]: train==[639.88342=639.86786 + 0.01521], recall=[0.16895, 0.24104], precision=[0.05583, 0.04142], hit=[0.57971, 0.69246], ndcg=[0.23678, 0.29413]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 59 [13.5s + 12.1s]: train==[599.13684=599.12170 + 0.01522], recall=[0.17752, 0.25305], precision=[0.05856, 0.04361], hit=[0.59318, 0.70215], ndcg=[0.24131, 0.30024]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 69 [13.6s + 12.0s]: train==[557.46704=557.45142 + 0.01522], recall=[0.18040, 0.25642], precision=[0.05952, 0.04439], hit=[0.59785, 0.70413], ndcg=[0.24188, 0.30081]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 79 [13.7s + 12.0s]: train==[521.96954=521.95398 + 0.01523], recall=[0.18144, 0.25847], precision=[0.05989, 0.04472], hit=[0.59551, 0.70395], ndcg=[0.24016, 0.29962]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 89 [13.8s + 12.4s]: train==[489.56918=489.55347 + 0.01523], recall=[0.18143, 0.26129], precision=[0.06010, 0.04506], hit=[0.59533, 0.70664], ndcg=[0.23949, 0.30000]
INFO:root:Epoch 99 [13.7s + 12.1s]: train==[464.57944=464.56369 + 0.01524], recall=[0.17957, 0.26263], precision=[0.05981, 0.04522], hit=[0.59282, 0.70969], ndcg=[0.23541, 0.29756]
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=1024, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=1024, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 0 [41.6s + 12.1s]: train==[693.09882=693.08337 + 0.01521], recall=[0.00561, 0.01039], precision=[0.00220, 0.00215], hit=[0.04237, 0.07953], ndcg=[0.01425, 0.02227]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1 [34.5s + 11.9s]: train==[692.94189=692.92719 + 0.01521], recall=[0.00585, 0.01097], precision=[0.00229, 0.00221], hit=[0.04417, 0.08187], ndcg=[0.01491, 0.02301]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2 [34.0s + 12.2s]: train==[692.78040=692.76489 + 0.01521], recall=[0.00587, 0.01118], precision=[0.00233, 0.00224], hit=[0.04470, 0.08276], ndcg=[0.01519, 0.02333]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3 [34.3s + 12.1s]: train==[692.68500=692.66992 + 0.01521], recall=[0.00595, 0.01155], precision=[0.00237, 0.00232], hit=[0.04560, 0.08564], ndcg=[0.01562, 0.02424]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 4 [34.8s + 12.7s]: train==[692.48871=692.47382 + 0.01521], recall=[0.00607, 0.01169], precision=[0.00241, 0.00236], hit=[0.04632, 0.08654], ndcg=[0.01586, 0.02460]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 5 [34.5s + 12.4s]: train==[692.25446=692.23981 + 0.01521], recall=[0.00612, 0.01208], precision=[0.00243, 0.00242], hit=[0.04668, 0.08887], ndcg=[0.01605, 0.02520]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 6 [34.4s + 12.4s]: train==[692.11212=692.09619 + 0.01521], recall=[0.00661, 0.01238], precision=[0.00261, 0.00249], hit=[0.04973, 0.09048], ndcg=[0.01701, 0.02592]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 7 [34.6s + 12.7s]: train==[692.01208=691.99634 + 0.01521], recall=[0.00679, 0.01284], precision=[0.00269, 0.00260], hit=[0.05135, 0.09479], ndcg=[0.01764, 0.02709]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 8 [34.8s + 13.0s]: train==[691.79944=691.78424 + 0.01521], recall=[0.00708, 0.01360], precision=[0.00282, 0.00271], hit=[0.05386, 0.09785], ndcg=[0.01839, 0.02802]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 9 [35.9s + 12.9s]: train==[691.62830=691.61310 + 0.01521], recall=[0.00722, 0.01443], precision=[0.00294, 0.00285], hit=[0.05619, 0.10269], ndcg=[0.01914, 0.02937]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 10 [34.8s + 12.6s]: train==[691.41034=691.39581 + 0.01521], recall=[0.00748, 0.01521], precision=[0.00298, 0.00300], hit=[0.05709, 0.10772], ndcg=[0.01968, 0.03088]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 11 [34.3s + 12.8s]: train==[691.16943=691.15442 + 0.01521], recall=[0.00791, 0.01623], precision=[0.00317, 0.00312], hit=[0.06032, 0.11131], ndcg=[0.02087, 0.03220]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 12 [34.7s + 12.5s]: train==[691.08215=691.06726 + 0.01521], recall=[0.00843, 0.01736], precision=[0.00332, 0.00330], hit=[0.06302, 0.11706], ndcg=[0.02206, 0.03407]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 13 [34.4s + 12.6s]: train==[690.81311=690.79871 + 0.01521], recall=[0.00893, 0.01847], precision=[0.00346, 0.00350], hit=[0.06553, 0.12226], ndcg=[0.02313, 0.03589]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 14 [34.6s + 13.1s]: train==[690.60669=690.59137 + 0.01521], recall=[0.00981, 0.02001], precision=[0.00369, 0.00368], hit=[0.06930, 0.12873], ndcg=[0.02472, 0.03806]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 15 [35.0s + 12.6s]: train==[690.36060=690.34479 + 0.01521], recall=[0.01060, 0.02157], precision=[0.00398, 0.00393], hit=[0.07433, 0.13591], ndcg=[0.02664, 0.04067]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 16 [34.8s + 13.0s]: train==[690.15533=690.13977 + 0.01521], recall=[0.01225, 0.02308], precision=[0.00440, 0.00418], hit=[0.08169, 0.14399], ndcg=[0.02913, 0.04336]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 17 [34.7s + 12.7s]: train==[689.77264=689.75757 + 0.01521], recall=[0.01317, 0.02506], precision=[0.00462, 0.00447], hit=[0.08564, 0.15350], ndcg=[0.03108, 0.04661]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 18 [35.0s + 12.5s]: train==[689.45691=689.44220 + 0.01521], recall=[0.01512, 0.02703], precision=[0.00529, 0.00485], hit=[0.09713, 0.16661], ndcg=[0.03550, 0.05135]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [35.1s + 12.9s]: train==[689.20441=689.18982 + 0.01521], recall=[0.01702, 0.03016], precision=[0.00577, 0.00528], hit=[0.10485, 0.17864], ndcg=[0.03887, 0.05597]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 20 [35.2s + 12.0s]: train==[688.93073=688.91571 + 0.01521], recall=[0.01885, 0.03274], precision=[0.00640, 0.00574], hit=[0.11526, 0.19210], ndcg=[0.04283, 0.06096]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 21 [34.9s + 12.8s]: train==[688.62219=688.60626 + 0.01521], recall=[0.02190, 0.03669], precision=[0.00731, 0.00636], hit=[0.13052, 0.20898], ndcg=[0.04867, 0.06760]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 22 [35.1s + 12.3s]: train==[688.15173=688.13623 + 0.01521], recall=[0.02420, 0.04042], precision=[0.00814, 0.00689], hit=[0.14381, 0.22190], ndcg=[0.05512, 0.07473]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 23 [35.2s + 12.7s]: train==[687.70502=687.68988 + 0.01521], recall=[0.02813, 0.04512], precision=[0.00933, 0.00763], hit=[0.16230, 0.24309], ndcg=[0.06262, 0.08299]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 24 [34.6s + 12.7s]: train==[687.27161=687.25653 + 0.01521], recall=[0.03144, 0.05030], precision=[0.01046, 0.00846], hit=[0.17846, 0.26481], ndcg=[0.07118, 0.09310]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 25 [35.0s + 12.7s]: train==[686.79895=686.78320 + 0.01521], recall=[0.03554, 0.05638], precision=[0.01180, 0.00946], hit=[0.19820, 0.28959], ndcg=[0.08005, 0.10372]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 26 [34.9s + 12.9s]: train==[686.09979=686.08392 + 0.01521], recall=[0.04112, 0.06281], precision=[0.01343, 0.01053], hit=[0.22136, 0.31454], ndcg=[0.09173, 0.11661]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 27 [35.0s + 12.9s]: train==[685.65240=685.63611 + 0.01521], recall=[0.04711, 0.06913], precision=[0.01534, 0.01161], hit=[0.24740, 0.33878], ndcg=[0.10422, 0.12936]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 28 [34.4s + 12.4s]: train==[684.93469=684.91907 + 0.01521], recall=[0.05246, 0.07690], precision=[0.01717, 0.01293], hit=[0.27163, 0.36499], ndcg=[0.11619, 0.14307]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 29 [34.8s + 12.7s]: train==[684.16290=684.14838 + 0.01521], recall=[0.05915, 0.08497], precision=[0.01924, 0.01429], hit=[0.29767, 0.39066], ndcg=[0.12948, 0.15757]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 30 [34.8s + 13.0s]: train==[683.36279=683.34729 + 0.01521], recall=[0.06557, 0.09371], precision=[0.02140, 0.01571], hit=[0.32370, 0.41616], ndcg=[0.14236, 0.17166]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 31 [35.0s + 12.5s]: train==[682.62195=682.60645 + 0.01521], recall=[0.07332, 0.10366], precision=[0.02414, 0.01734], hit=[0.35242, 0.44632], ndcg=[0.15598, 0.18622]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 32 [34.4s + 12.5s]: train==[681.65747=681.64166 + 0.01521], recall=[0.08071, 0.11361], precision=[0.02652, 0.01907], hit=[0.37882, 0.47451], ndcg=[0.16775, 0.20036]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 33 [34.6s + 12.8s]: train==[680.60773=680.59186 + 0.01521], recall=[0.08896, 0.12395], precision=[0.02929, 0.02074], hit=[0.40413, 0.50018], ndcg=[0.17974, 0.21349]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 34 [34.8s + 12.7s]: train==[679.35181=679.33679 + 0.01521], recall=[0.09824, 0.13379], precision=[0.03239, 0.02247], hit=[0.43321, 0.52352], ndcg=[0.19293, 0.22643]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 35 [35.0s + 12.8s]: train==[678.05957=678.04498 + 0.01521], recall=[0.10581, 0.14422], precision=[0.03474, 0.02433], hit=[0.45153, 0.54686], ndcg=[0.20132, 0.23753]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 36 [34.8s + 12.4s]: train==[676.74414=676.72821 + 0.01521], recall=[0.11392, 0.15508], precision=[0.03732, 0.02610], hit=[0.47163, 0.56697], ndcg=[0.21002, 0.24782]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 37 [35.0s + 13.1s]: train==[675.45404=675.43842 + 0.01521], recall=[0.12177, 0.16471], precision=[0.03984, 0.02789], hit=[0.48833, 0.58528], ndcg=[0.21671, 0.25643]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 38 [35.3s + 12.5s]: train==[673.76477=673.74976 + 0.01521], recall=[0.12768, 0.17590], precision=[0.04226, 0.02960], hit=[0.50323, 0.60305], ndcg=[0.22227, 0.26402]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [35.1s + 12.7s]: train==[672.20026=672.18512 + 0.01521], recall=[0.13334, 0.18588], precision=[0.04445, 0.03128], hit=[0.51670, 0.61903], ndcg=[0.22587, 0.26976]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 40 [35.8s + 13.0s]: train==[670.41986=670.40454 + 0.01521], recall=[0.13956, 0.19489], precision=[0.04649, 0.03271], hit=[0.52926, 0.63214], ndcg=[0.22991, 0.27512]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 41 [34.9s + 12.9s]: train==[668.43121=668.41583 + 0.01521], recall=[0.14385, 0.20357], precision=[0.04808, 0.03416], hit=[0.53842, 0.64434], ndcg=[0.23234, 0.27987]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 42 [35.4s + 12.7s]: train==[666.37384=666.35889 + 0.01521], recall=[0.15014, 0.21117], precision=[0.04993, 0.03545], hit=[0.54955, 0.65458], ndcg=[0.23529, 0.28375]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 43 [34.3s + 13.2s]: train==[664.18463=664.16998 + 0.01521], recall=[0.15575, 0.21865], precision=[0.05166, 0.03654], hit=[0.55961, 0.66517], ndcg=[0.23756, 0.28686]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 44 [35.3s + 12.6s]: train==[661.68384=661.66876 + 0.01521], recall=[0.16043, 0.22440], precision=[0.05326, 0.03752], hit=[0.56715, 0.67235], ndcg=[0.23991, 0.28962]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 45 [35.1s + 12.3s]: train==[659.10791=659.09308 + 0.01521], recall=[0.16457, 0.22992], precision=[0.05469, 0.03834], hit=[0.57487, 0.67899], ndcg=[0.24232, 0.29202]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 46 [36.5s + 12.6s]: train==[656.25671=656.24249 + 0.01521], recall=[0.16763, 0.23342], precision=[0.05557, 0.03909], hit=[0.57828, 0.68276], ndcg=[0.24332, 0.29389]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 47 [34.6s + 12.4s]: train==[653.22034=653.20435 + 0.01522], recall=[0.17059, 0.23650], precision=[0.05649, 0.03968], hit=[0.58330, 0.68600], ndcg=[0.24503, 0.29559]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 48 [35.1s + 12.6s]: train==[650.44855=650.43317 + 0.01522], recall=[0.17275, 0.23967], precision=[0.05724, 0.04030], hit=[0.58761, 0.68869], ndcg=[0.24579, 0.29688]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 49 [34.5s + 12.6s]: train==[647.19135=647.17554 + 0.01522], recall=[0.17471, 0.24141], precision=[0.05776, 0.04072], hit=[0.58887, 0.69138], ndcg=[0.24616, 0.29778]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 50 [35.3s + 12.8s]: train==[643.51404=643.49866 + 0.01522], recall=[0.17596, 0.24367], precision=[0.05803, 0.04112], hit=[0.59013, 0.69443], ndcg=[0.24658, 0.29898]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 51 [35.0s + 13.0s]: train==[640.15564=640.13977 + 0.01522], recall=[0.17767, 0.24448], precision=[0.05844, 0.04139], hit=[0.59318, 0.69461], ndcg=[0.24725, 0.29937]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 52 [34.7s + 12.8s]: train==[636.87988=636.86444 + 0.01522], recall=[0.17856, 0.24622], precision=[0.05864, 0.04171], hit=[0.59425, 0.69767], ndcg=[0.24725, 0.30026]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 53 [35.1s + 12.2s]: train==[632.71234=632.69745 + 0.01522], recall=[0.17918, 0.24795], precision=[0.05893, 0.04203], hit=[0.59497, 0.69856], ndcg=[0.24719, 0.30056]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 54 [35.1s + 12.9s]: train==[629.27808=629.26263 + 0.01522], recall=[0.17967, 0.24852], precision=[0.05910, 0.04219], hit=[0.59425, 0.69874], ndcg=[0.24730, 0.30078]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 55 [34.6s + 12.2s]: train==[625.71173=625.69580 + 0.01522], recall=[0.17987, 0.24928], precision=[0.05924, 0.04238], hit=[0.59461, 0.70072], ndcg=[0.24736, 0.30135]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 56 [35.6s + 13.3s]: train==[620.77252=620.75769 + 0.01522], recall=[0.18074, 0.25028], precision=[0.05937, 0.04259], hit=[0.59623, 0.70126], ndcg=[0.24758, 0.30170]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 57 [35.8s + 11.8s]: train==[617.31738=617.30182 + 0.01522], recall=[0.18083, 0.25109], precision=[0.05944, 0.04280], hit=[0.59587, 0.70108], ndcg=[0.24745, 0.30195]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 58 [36.0s + 12.8s]: train==[612.69165=612.67682 + 0.01522], recall=[0.18100, 0.25171], precision=[0.05961, 0.04302], hit=[0.59605, 0.70197], ndcg=[0.24742, 0.30226]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 59 [36.5s + 13.6s]: train==[609.10114=609.08618 + 0.01522], recall=[0.18068, 0.25250], precision=[0.05961, 0.04320], hit=[0.59623, 0.70269], ndcg=[0.24676, 0.30227]
INFO:root:Epoch 60 [35.2s + 12.4s]: train==[603.93591=603.92065 + 0.01522], recall=[0.18095, 0.25288], precision=[0.05969, 0.04333], hit=[0.59713, 0.70269], ndcg=[0.24700, 0.30251]
INFO:root:Epoch 61 [36.6s + 13.5s]: train==[600.21838=600.20288 + 0.01522], recall=[0.18104, 0.25350], precision=[0.05978, 0.04349], hit=[0.59677, 0.70269], ndcg=[0.24685, 0.30259]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 62 [35.2s + 13.5s]: train==[595.17230=595.15747 + 0.01522], recall=[0.18175, 0.25417], precision=[0.05996, 0.04362], hit=[0.59820, 0.70359], ndcg=[0.24695, 0.30280]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 63 [35.6s + 13.0s]: train==[591.63086=591.61511 + 0.01522], recall=[0.18165, 0.25489], precision=[0.05996, 0.04375], hit=[0.59820, 0.70449], ndcg=[0.24709, 0.30333]
INFO:root:Epoch 64 [36.3s + 13.1s]: train==[587.64624=587.63068 + 0.01522], recall=[0.18210, 0.25526], precision=[0.06000, 0.04386], hit=[0.59874, 0.70449], ndcg=[0.24673, 0.30311]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 65 [36.2s + 13.1s]: train==[582.34027=582.32526 + 0.01522], recall=[0.18203, 0.25551], precision=[0.06003, 0.04393], hit=[0.59803, 0.70431], ndcg=[0.24705, 0.30370]
INFO:root:Epoch 66 [35.2s + 12.5s]: train==[578.85388=578.83887 + 0.01522], recall=[0.18221, 0.25712], precision=[0.06009, 0.04413], hit=[0.59785, 0.70628], ndcg=[0.24693, 0.30421]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 67 [36.5s + 13.0s]: train==[574.13043=574.11493 + 0.01523], recall=[0.18210, 0.25730], precision=[0.06014, 0.04422], hit=[0.59749, 0.70628], ndcg=[0.24701, 0.30450]
INFO:root:Epoch 68 [35.0s + 13.6s]: train==[570.83411=570.81873 + 0.01523], recall=[0.18170, 0.25733], precision=[0.06013, 0.04426], hit=[0.59713, 0.70539], ndcg=[0.24661, 0.30420]
INFO:root:Epoch 69 [35.4s + 12.2s]: train==[566.23761=566.22314 + 0.01523], recall=[0.18191, 0.25778], precision=[0.06016, 0.04439], hit=[0.59749, 0.70610], ndcg=[0.24658, 0.30451]
INFO:root:Epoch 70 [36.0s + 12.6s]: train==[562.39252=562.37762 + 0.01523], recall=[0.18175, 0.25753], precision=[0.06013, 0.04444], hit=[0.59749, 0.70664], ndcg=[0.24626, 0.30450]
INFO:root:Epoch 71 [35.3s + 12.5s]: train==[558.49158=558.47614 + 0.01523], recall=[0.18163, 0.25803], precision=[0.06021, 0.04452], hit=[0.59731, 0.70664], ndcg=[0.24660, 0.30490]
INFO:root:Best Iter=[66]@[3450.1] recall=[0.18221 0.25712], precision=[0.06009 0.04413], hit=[0.59785 0.70628], ndcg=[0.24693 0.30421]
INFO:root:Namespace(Ks='[20, 40]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 0 [675.8s + 29.5s]: train==[691.98474=691.96893 + 0.01522], recall=[0.00315, 0.00315], precision=[0.00031, 0.00031], hit=[0.00315, 0.00315], ndcg=[0.00130, 0.00130]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=10, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 0 [44.8s + 30.6s]: train==[693.05658=693.04193 + 0.01521], recall=[0.00348, 0.00348], precision=[0.00035, 0.00035], hit=[0.00348, 0.00348], ndcg=[0.00151, 0.00151]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 1 [38.3s + 31.7s]: train==[693.00073=692.98621 + 0.01521], recall=[0.00364, 0.00364], precision=[0.00036, 0.00036], hit=[0.00364, 0.00364], ndcg=[0.00156, 0.00156]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 2 [38.5s + 31.6s]: train==[692.83502=692.82001 + 0.01521], recall=[0.00381, 0.00381], precision=[0.00038, 0.00038], hit=[0.00381, 0.00381], ndcg=[0.00162, 0.00162]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 3 [38.1s + 31.2s]: train==[692.71246=692.69690 + 0.01521], recall=[0.00381, 0.00381], precision=[0.00038, 0.00038], hit=[0.00381, 0.00381], ndcg=[0.00163, 0.00163]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 4 [38.4s + 31.1s]: train==[692.54047=692.52563 + 0.01521], recall=[0.00381, 0.00381], precision=[0.00038, 0.00038], hit=[0.00381, 0.00381], ndcg=[0.00164, 0.00164]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 5 [39.4s + 31.7s]: train==[692.44476=692.42896 + 0.01521], recall=[0.00364, 0.00364], precision=[0.00036, 0.00036], hit=[0.00364, 0.00364], ndcg=[0.00161, 0.00161]
INFO:root:Epoch 6 [38.7s + 31.1s]: train==[692.26324=692.24762 + 0.01521], recall=[0.00348, 0.00348], precision=[0.00035, 0.00035], hit=[0.00348, 0.00348], ndcg=[0.00156, 0.00156]
INFO:root:Epoch 7 [42.5s + 50.2s]: train==[692.14343=692.12921 + 0.01521], recall=[0.00364, 0.00364], precision=[0.00036, 0.00036], hit=[0.00364, 0.00364], ndcg=[0.00161, 0.00161]
INFO:root:Epoch 8 [40.5s + 32.1s]: train==[692.02686=692.01172 + 0.01521], recall=[0.00414, 0.00414], precision=[0.00041, 0.00041], hit=[0.00414, 0.00414], ndcg=[0.00180, 0.00180]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 9 [38.4s + 30.6s]: train==[691.80365=691.78918 + 0.01521], recall=[0.00431, 0.00431], precision=[0.00043, 0.00043], hit=[0.00431, 0.00431], ndcg=[0.00187, 0.00187]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 10 [38.5s + 30.5s]: train==[691.61322=691.59784 + 0.01521], recall=[0.00464, 0.00464], precision=[0.00046, 0.00046], hit=[0.00464, 0.00464], ndcg=[0.00206, 0.00206]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 11 [37.9s + 30.9s]: train==[691.45538=691.43958 + 0.01521], recall=[0.00497, 0.00497], precision=[0.00050, 0.00050], hit=[0.00497, 0.00497], ndcg=[0.00213, 0.00213]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 12 [37.9s + 30.9s]: train==[691.15460=691.13873 + 0.01521], recall=[0.00563, 0.00563], precision=[0.00056, 0.00056], hit=[0.00563, 0.00563], ndcg=[0.00235, 0.00235]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 13 [38.5s + 31.1s]: train==[690.97528=690.96027 + 0.01521], recall=[0.00580, 0.00580], precision=[0.00058, 0.00058], hit=[0.00580, 0.00580], ndcg=[0.00250, 0.00250]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 14 [38.0s + 30.9s]: train==[690.58691=690.57166 + 0.01521], recall=[0.00646, 0.00646], precision=[0.00065, 0.00065], hit=[0.00646, 0.00646], ndcg=[0.00282, 0.00282]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 15 [39.0s + 31.6s]: train==[690.23602=690.22003 + 0.01521], recall=[0.00646, 0.00646], precision=[0.00065, 0.00065], hit=[0.00646, 0.00646], ndcg=[0.00296, 0.00296]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 16 [37.6s + 31.6s]: train==[689.76971=689.75439 + 0.01521], recall=[0.00795, 0.00795], precision=[0.00079, 0.00079], hit=[0.00795, 0.00795], ndcg=[0.00353, 0.00353]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 17 [38.1s + 30.4s]: train==[689.31189=689.29694 + 0.01521], recall=[0.00861, 0.00861], precision=[0.00086, 0.00086], hit=[0.00861, 0.00861], ndcg=[0.00416, 0.00416]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 18 [38.1s + 31.5s]: train==[688.85156=688.83649 + 0.01521], recall=[0.01010, 0.01010], precision=[0.00101, 0.00101], hit=[0.01010, 0.01010], ndcg=[0.00482, 0.00482]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [38.1s + 35.2s]: train==[688.30133=688.28625 + 0.01521], recall=[0.01209, 0.01209], precision=[0.00121, 0.00121], hit=[0.01209, 0.01209], ndcg=[0.00582, 0.00582]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 20 [39.4s + 31.7s]: train==[687.64691=687.63135 + 0.01521], recall=[0.01507, 0.01507], precision=[0.00151, 0.00151], hit=[0.01507, 0.01507], ndcg=[0.00716, 0.00716]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 21 [39.3s + 32.1s]: train==[686.73267=686.71790 + 0.01521], recall=[0.01672, 0.01672], precision=[0.00167, 0.00167], hit=[0.01672, 0.01672], ndcg=[0.00813, 0.00813]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 22 [39.0s + 31.8s]: train==[685.98273=685.96759 + 0.01521], recall=[0.02004, 0.02004], precision=[0.00200, 0.00200], hit=[0.02004, 0.02004], ndcg=[0.00961, 0.00961]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 23 [38.3s + 29.7s]: train==[684.91119=684.89624 + 0.01521], recall=[0.02169, 0.02169], precision=[0.00217, 0.00217], hit=[0.02169, 0.02169], ndcg=[0.01046, 0.01046]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 24 [38.0s + 29.9s]: train==[683.68433=683.66980 + 0.01521], recall=[0.02302, 0.02302], precision=[0.00230, 0.00230], hit=[0.02302, 0.02302], ndcg=[0.01134, 0.01134]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 25 [38.5s + 30.2s]: train==[682.60291=682.58850 + 0.01521], recall=[0.02534, 0.02534], precision=[0.00253, 0.00253], hit=[0.02534, 0.02534], ndcg=[0.01209, 0.01209]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 26 [38.6s + 31.1s]: train==[681.19031=681.17578 + 0.01521], recall=[0.02666, 0.02666], precision=[0.00267, 0.00267], hit=[0.02666, 0.02666], ndcg=[0.01282, 0.01282]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 27 [50.6s + 38.3s]: train==[679.62744=679.61243 + 0.01521], recall=[0.02848, 0.02848], precision=[0.00285, 0.00285], hit=[0.02848, 0.02848], ndcg=[0.01346, 0.01346]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 28 [40.8s + 36.7s]: train==[677.64764=677.63220 + 0.01521], recall=[0.02832, 0.02832], precision=[0.00283, 0.00283], hit=[0.02832, 0.02832], ndcg=[0.01372, 0.01372]
INFO:root:Epoch 29 [39.3s + 30.2s]: train==[675.63391=675.61859 + 0.01521], recall=[0.02865, 0.02865], precision=[0.00286, 0.00286], hit=[0.02865, 0.02865], ndcg=[0.01391, 0.01391]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 30 [38.9s + 31.1s]: train==[673.38037=673.36554 + 0.01521], recall=[0.02848, 0.02848], precision=[0.00285, 0.00285], hit=[0.02848, 0.02848], ndcg=[0.01407, 0.01407]
INFO:root:Epoch 31 [38.1s + 31.1s]: train==[670.91815=670.90387 + 0.01521], recall=[0.02914, 0.02914], precision=[0.00291, 0.00291], hit=[0.02914, 0.02914], ndcg=[0.01446, 0.01446]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 32 [38.1s + 31.1s]: train==[668.11658=668.10187 + 0.01521], recall=[0.02931, 0.02931], precision=[0.00293, 0.00293], hit=[0.02931, 0.02931], ndcg=[0.01448, 0.01448]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 33 [37.9s + 31.9s]: train==[665.10675=665.09088 + 0.01521], recall=[0.03163, 0.03163], precision=[0.00316, 0.00316], hit=[0.03163, 0.03163], ndcg=[0.01513, 0.01513]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 34 [38.1s + 30.6s]: train==[662.27124=662.25500 + 0.01521], recall=[0.03312, 0.03312], precision=[0.00331, 0.00331], hit=[0.03312, 0.03312], ndcg=[0.01545, 0.01545]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 35 [37.8s + 32.2s]: train==[658.58289=658.56824 + 0.01521], recall=[0.03295, 0.03295], precision=[0.00330, 0.00330], hit=[0.03295, 0.03295], ndcg=[0.01557, 0.01557]
INFO:root:Epoch 36 [38.2s + 30.4s]: train==[655.40198=655.38702 + 0.01521], recall=[0.03328, 0.03328], precision=[0.00333, 0.00333], hit=[0.03328, 0.03328], ndcg=[0.01586, 0.01586]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 37 [38.3s + 30.6s]: train==[651.38245=651.36737 + 0.01521], recall=[0.03345, 0.03345], precision=[0.00334, 0.00334], hit=[0.03345, 0.03345], ndcg=[0.01593, 0.01593]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 38 [38.5s + 31.0s]: train==[646.73792=646.72296 + 0.01520], recall=[0.03395, 0.03395], precision=[0.00339, 0.00339], hit=[0.03395, 0.03395], ndcg=[0.01619, 0.01619]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [38.7s + 29.9s]: train==[643.00305=642.98816 + 0.01520], recall=[0.03444, 0.03444], precision=[0.00344, 0.00344], hit=[0.03444, 0.03444], ndcg=[0.01649, 0.01649]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 40 [37.8s + 30.2s]: train==[638.04126=638.02594 + 0.01520], recall=[0.03428, 0.03428], precision=[0.00343, 0.00343], hit=[0.03428, 0.03428], ndcg=[0.01657, 0.01657]
INFO:root:Epoch 41 [38.1s + 30.9s]: train==[633.22284=633.20825 + 0.01520], recall=[0.03461, 0.03461], precision=[0.00346, 0.00346], hit=[0.03461, 0.03461], ndcg=[0.01663, 0.01663]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 42 [38.6s + 31.7s]: train==[627.96606=627.95081 + 0.01520], recall=[0.03494, 0.03494], precision=[0.00349, 0.00349], hit=[0.03494, 0.03494], ndcg=[0.01680, 0.01680]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 43 [39.1s + 31.3s]: train==[623.20099=623.18634 + 0.01520], recall=[0.03544, 0.03544], precision=[0.00354, 0.00354], hit=[0.03544, 0.03544], ndcg=[0.01696, 0.01696]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 44 [37.9s + 36.8s]: train==[617.76697=617.75305 + 0.01520], recall=[0.03577, 0.03577], precision=[0.00358, 0.00358], hit=[0.03577, 0.03577], ndcg=[0.01709, 0.01709]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 45 [38.2s + 29.6s]: train==[612.68243=612.66669 + 0.01520], recall=[0.03544, 0.03544], precision=[0.00354, 0.00354], hit=[0.03544, 0.03544], ndcg=[0.01704, 0.01704]
INFO:root:Epoch 46 [38.9s + 30.3s]: train==[606.83350=606.81842 + 0.01520], recall=[0.03593, 0.03593], precision=[0.00359, 0.00359], hit=[0.03593, 0.03593], ndcg=[0.01719, 0.01719]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 47 [39.9s + 35.9s]: train==[601.22418=601.20868 + 0.01520], recall=[0.03560, 0.03560], precision=[0.00356, 0.00356], hit=[0.03560, 0.03560], ndcg=[0.01707, 0.01707]
INFO:root:Epoch 48 [47.2s + 39.4s]: train==[595.16089=595.14581 + 0.01520], recall=[0.03560, 0.03560], precision=[0.00356, 0.00356], hit=[0.03560, 0.03560], ndcg=[0.01697, 0.01697]
INFO:root:Epoch 49 [38.8s + 32.1s]: train==[590.67407=590.65912 + 0.01520], recall=[0.03577, 0.03577], precision=[0.00358, 0.00358], hit=[0.03577, 0.03577], ndcg=[0.01706, 0.01706]
INFO:root:Epoch 50 [38.2s + 30.7s]: train==[584.82336=584.80823 + 0.01520], recall=[0.03626, 0.03626], precision=[0.00363, 0.00363], hit=[0.03626, 0.03626], ndcg=[0.01724, 0.01724]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 51 [37.9s + 31.7s]: train==[579.13007=579.11475 + 0.01520], recall=[0.03610, 0.03610], precision=[0.00361, 0.00361], hit=[0.03610, 0.03610], ndcg=[0.01698, 0.01698]
INFO:root:Epoch 52 [39.0s + 30.0s]: train==[573.52515=573.50983 + 0.01520], recall=[0.03643, 0.03643], precision=[0.00364, 0.00364], hit=[0.03643, 0.03643], ndcg=[0.01721, 0.01721]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 53 [38.5s + 32.0s]: train==[568.95325=568.93787 + 0.01520], recall=[0.03626, 0.03626], precision=[0.00363, 0.00363], hit=[0.03626, 0.03626], ndcg=[0.01745, 0.01745]
INFO:root:Epoch 54 [38.4s + 31.8s]: train==[562.93201=562.91693 + 0.01520], recall=[0.03593, 0.03593], precision=[0.00359, 0.00359], hit=[0.03593, 0.03593], ndcg=[0.01734, 0.01734]
INFO:root:Epoch 55 [38.3s + 29.6s]: train==[557.80316=557.78827 + 0.01520], recall=[0.03660, 0.03660], precision=[0.00366, 0.00366], hit=[0.03660, 0.03660], ndcg=[0.01755, 0.01755]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 56 [38.1s + 29.7s]: train==[553.14734=553.13190 + 0.01520], recall=[0.03660, 0.03660], precision=[0.00366, 0.00366], hit=[0.03660, 0.03660], ndcg=[0.01749, 0.01749]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 57 [37.5s + 30.9s]: train==[549.19037=549.17529 + 0.01520], recall=[0.03676, 0.03676], precision=[0.00368, 0.00368], hit=[0.03676, 0.03676], ndcg=[0.01762, 0.01762]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 58 [38.0s + 31.2s]: train==[544.33447=544.31934 + 0.01520], recall=[0.03709, 0.03709], precision=[0.00371, 0.00371], hit=[0.03709, 0.03709], ndcg=[0.01767, 0.01767]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 59 [38.7s + 30.4s]: train==[539.55334=539.53864 + 0.01520], recall=[0.03726, 0.03726], precision=[0.00373, 0.00373], hit=[0.03726, 0.03726], ndcg=[0.01751, 0.01751]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 60 [38.1s + 30.3s]: train==[535.04596=535.03101 + 0.01520], recall=[0.03809, 0.03809], precision=[0.00381, 0.00381], hit=[0.03809, 0.03809], ndcg=[0.01782, 0.01782]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 61 [37.9s + 30.6s]: train==[531.54193=531.52631 + 0.01520], recall=[0.03858, 0.03858], precision=[0.00386, 0.00386], hit=[0.03858, 0.03858], ndcg=[0.01789, 0.01789]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 62 [38.9s + 30.2s]: train==[526.16809=526.15271 + 0.01520], recall=[0.03875, 0.03875], precision=[0.00387, 0.00387], hit=[0.03875, 0.03875], ndcg=[0.01788, 0.01788]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 63 [38.0s + 39.5s]: train==[523.29205=523.27692 + 0.01520], recall=[0.03809, 0.03809], precision=[0.00381, 0.00381], hit=[0.03809, 0.03809], ndcg=[0.01785, 0.01785]
INFO:root:Epoch 64 [38.7s + 30.8s]: train==[519.25604=519.24078 + 0.01520], recall=[0.03742, 0.03742], precision=[0.00374, 0.00374], hit=[0.03742, 0.03742], ndcg=[0.01755, 0.01755]
INFO:root:Epoch 65 [38.1s + 32.1s]: train==[517.35327=517.33807 + 0.01520], recall=[0.03759, 0.03759], precision=[0.00376, 0.00376], hit=[0.03759, 0.03759], ndcg=[0.01764, 0.01764]
INFO:root:Epoch 66 [38.6s + 31.2s]: train==[511.52115=511.50565 + 0.01520], recall=[0.03676, 0.03676], precision=[0.00368, 0.00368], hit=[0.03676, 0.03676], ndcg=[0.01739, 0.01739]
INFO:root:Epoch 67 [41.2s + 32.1s]: train==[508.96829=508.95251 + 0.01520], recall=[0.03709, 0.03709], precision=[0.00371, 0.00371], hit=[0.03709, 0.03709], ndcg=[0.01746, 0.01746]
INFO:root:Best Iter=[62]@[4825.1] recall=[0.03875], precision=[0.00387], hit=[0.03875], ndcg=[0.01788]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=10000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=128, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=0, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=1, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=1, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=1, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=1, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [44.8s + 29.9s]: train==[692.83496=692.81903 + 0.01583], recall=[0.21129, 0.21129], precision=[0.02113, 0.02113], hit=[0.21129, 0.21129], ndcg=[0.09765, 0.09765]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [42.3s + 29.1s]: train==[692.32886=692.31287 + 0.01580], recall=[0.24590, 0.24590], precision=[0.02459, 0.02459], hit=[0.24590, 0.24590], ndcg=[0.11735, 0.11735]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 29 [45.4s + 29.9s]: train==[692.38281=692.36755 + 0.01578], recall=[0.26494, 0.26494], precision=[0.02649, 0.02649], hit=[0.26494, 0.26494], ndcg=[0.12797, 0.12797]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [42.2s + 28.3s]: train==[692.44476=692.42859 + 0.01575], recall=[0.26809, 0.26809], precision=[0.02681, 0.02681], hit=[0.26809, 0.26809], ndcg=[0.13276, 0.13276]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 49 [45.7s + 32.2s]: train==[692.52374=692.50793 + 0.01573], recall=[0.26958, 0.26958], precision=[0.02696, 0.02696], hit=[0.26958, 0.26958], ndcg=[0.13239, 0.13239]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 59 [42.8s + 29.7s]: train==[692.59680=692.58124 + 0.01572], recall=[0.26097, 0.26097], precision=[0.02610, 0.02610], hit=[0.26097, 0.26097], ndcg=[0.12963, 0.12963]
INFO:root:Epoch 69 [46.3s + 27.7s]: train==[692.63446=692.61951 + 0.01571], recall=[0.26064, 0.26064], precision=[0.02606, 0.02606], hit=[0.26064, 0.26064], ndcg=[0.12786, 0.12786]
INFO:root:Epoch 79 [42.8s + 28.1s]: train==[692.66376=692.64844 + 0.01571], recall=[0.25484, 0.25484], precision=[0.02548, 0.02548], hit=[0.25484, 0.25484], ndcg=[0.12413, 0.12413]
INFO:root:Epoch 89 [46.0s + 29.2s]: train==[692.65533=692.64038 + 0.01571], recall=[0.25435, 0.25435], precision=[0.02543, 0.02543], hit=[0.25435, 0.25435], ndcg=[0.12474, 0.12474]
INFO:root:Epoch 99 [43.3s + 28.6s]: train==[692.63000=692.61377 + 0.01571], recall=[0.25700, 0.25700], precision=[0.02570, 0.02570], hit=[0.25700, 0.25700], ndcg=[0.12670, 0.12670]
INFO:root:Best Iter=[4]@[4015.9] recall=[0.26958], precision=[0.02696], hit=[0.26958], ndcg=[0.13239]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=1000, gpu=1, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [41.0s + 29.6s]: train==[692.96063=692.94519 + 0.01583], recall=[0.20136, 0.20136], precision=[0.02014, 0.02014], hit=[0.20136, 0.20136], ndcg=[0.09303, 0.09303]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 19 [40.5s + 30.8s]: train==[692.21899=692.20349 + 0.01580], recall=[0.25551, 0.25551], precision=[0.02555, 0.02555], hit=[0.25551, 0.25551], ndcg=[0.11859, 0.11859]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 29 [42.0s + 28.0s]: train==[692.28137=692.26526 + 0.01577], recall=[0.27422, 0.27422], precision=[0.02742, 0.02742], hit=[0.27422, 0.27422], ndcg=[0.13403, 0.13403]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 39 [40.4s + 29.7s]: train==[692.31818=692.30231 + 0.01575], recall=[0.28664, 0.28664], precision=[0.02866, 0.02866], hit=[0.28664, 0.28664], ndcg=[0.14419, 0.14419]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 49 [40.2s + 28.4s]: train==[692.42004=692.40381 + 0.01573], recall=[0.28167, 0.28167], precision=[0.02817, 0.02817], hit=[0.28167, 0.28167], ndcg=[0.14093, 0.14093]
INFO:root:Epoch 59 [40.8s + 31.0s]: train==[692.52997=692.51398 + 0.01572], recall=[0.27356, 0.27356], precision=[0.02736, 0.02736], hit=[0.27356, 0.27356], ndcg=[0.13653, 0.13653]
INFO:root:Epoch 69 [40.3s + 30.3s]: train==[692.60175=692.58521 + 0.01571], recall=[0.26196, 0.26196], precision=[0.02620, 0.02620], hit=[0.26196, 0.26196], ndcg=[0.13030, 0.13030]
INFO:root:Epoch 79 [41.6s + 29.6s]: train==[692.64233=692.62604 + 0.01570], recall=[0.26180, 0.26180], precision=[0.02618, 0.02618], hit=[0.26180, 0.26180], ndcg=[0.12813, 0.12813]
INFO:root:Epoch 89 [41.4s + 29.8s]: train==[692.62140=692.60486 + 0.01570], recall=[0.25501, 0.25501], precision=[0.02550, 0.02550], hit=[0.25501, 0.25501], ndcg=[0.12700, 0.12700]
INFO:root:Epoch 99 [41.1s + 28.5s]: train==[692.60382=692.58826 + 0.01571], recall=[0.26047, 0.26047], precision=[0.02605, 0.02605], hit=[0.26047, 0.26047], ndcg=[0.12816, 0.12816]
INFO:root:Epoch 109 [41.3s + 29.5s]: train==[692.53522=692.52002 + 0.01571], recall=[0.26213, 0.26213], precision=[0.02621, 0.02621], hit=[0.26213, 0.26213], ndcg=[0.13108, 0.13108]
INFO:root:Epoch 119 [46.2s + 34.3s]: train==[692.46069=692.44446 + 0.01572], recall=[0.27256, 0.27256], precision=[0.02726, 0.02726], hit=[0.27256, 0.27256], ndcg=[0.13781, 0.13781]
INFO:root:Epoch 129 [43.9s + 29.1s]: train==[692.29474=692.27972 + 0.01574], recall=[0.28746, 0.28746], precision=[0.02875, 0.02875], hit=[0.28746, 0.28746], ndcg=[0.14708, 0.14708]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 139 [43.6s + 28.7s]: train==[692.11517=692.10046 + 0.01576], recall=[0.30286, 0.30286], precision=[0.03029, 0.03029], hit=[0.30286, 0.30286], ndcg=[0.15691, 0.15691]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 149 [44.4s + 30.4s]: train==[691.93079=691.91528 + 0.01578], recall=[0.32721, 0.32721], precision=[0.03272, 0.03272], hit=[0.32721, 0.32721], ndcg=[0.17329, 0.17329]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 159 [44.9s + 30.4s]: train==[691.62634=691.60980 + 0.01581], recall=[0.35966, 0.35966], precision=[0.03597, 0.03597], hit=[0.35966, 0.35966], ndcg=[0.19471, 0.19471]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 169 [43.1s + 29.8s]: train==[691.26587=691.24945 + 0.01586], recall=[0.38732, 0.38732], precision=[0.03873, 0.03873], hit=[0.38732, 0.38732], ndcg=[0.21552, 0.21552]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 179 [44.8s + 31.7s]: train==[690.86530=690.85022 + 0.01590], recall=[0.41894, 0.41894], precision=[0.04189, 0.04189], hit=[0.41894, 0.41894], ndcg=[0.23748, 0.23748]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 189 [44.4s + 31.6s]: train==[690.31195=690.29614 + 0.01597], recall=[0.45388, 0.45388], precision=[0.04539, 0.04539], hit=[0.45388, 0.45388], ndcg=[0.26191, 0.26191]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 199 [46.5s + 32.2s]: train==[689.71387=689.69794 + 0.01604], recall=[0.48352, 0.48352], precision=[0.04835, 0.04835], hit=[0.48352, 0.48352], ndcg=[0.28210, 0.28210]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 209 [45.4s + 31.4s]: train==[689.02710=689.01202 + 0.01613], recall=[0.51051, 0.51051], precision=[0.05105, 0.05105], hit=[0.51051, 0.51051], ndcg=[0.30106, 0.30106]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 219 [46.3s + 31.4s]: train==[688.24683=688.23126 + 0.01623], recall=[0.53933, 0.53933], precision=[0.05393, 0.05393], hit=[0.53933, 0.53933], ndcg=[0.31822, 0.31822]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 229 [46.5s + 32.9s]: train==[687.34540=687.32977 + 0.01635], recall=[0.55804, 0.55804], precision=[0.05580, 0.05580], hit=[0.55804, 0.55804], ndcg=[0.32850, 0.32850]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 239 [45.9s + 32.1s]: train==[686.21527=686.19873 + 0.01649], recall=[0.57824, 0.57824], precision=[0.05782, 0.05782], hit=[0.57824, 0.57824], ndcg=[0.34365, 0.34365]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 249 [45.2s + 32.1s]: train==[685.11151=685.09351 + 0.01665], recall=[0.58967, 0.58967], precision=[0.05897, 0.05897], hit=[0.58967, 0.58967], ndcg=[0.34635, 0.34635]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 259 [44.9s + 32.1s]: train==[683.86359=683.84686 + 0.01683], recall=[0.60440, 0.60440], precision=[0.06044, 0.06044], hit=[0.60440, 0.60440], ndcg=[0.35348, 0.35348]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 269 [44.0s + 32.9s]: train==[682.46075=682.44342 + 0.01703], recall=[0.61566, 0.61566], precision=[0.06157, 0.06157], hit=[0.61566, 0.61566], ndcg=[0.35930, 0.35930]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 279 [43.9s + 33.0s]: train==[680.71045=680.69281 + 0.01726], recall=[0.61997, 0.61997], precision=[0.06200, 0.06200], hit=[0.61997, 0.61997], ndcg=[0.36273, 0.36273]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 289 [46.5s + 33.8s]: train==[678.95648=678.93896 + 0.01751], recall=[0.62676, 0.62676], precision=[0.06268, 0.06268], hit=[0.62676, 0.62676], ndcg=[0.36188, 0.36188]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 299 [47.1s + 35.4s]: train==[676.94507=676.92737 + 0.01778], recall=[0.62891, 0.62891], precision=[0.06289, 0.06289], hit=[0.62891, 0.62891], ndcg=[0.36773, 0.36773]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 309 [43.8s + 33.0s]: train==[674.89917=674.88074 + 0.01807], recall=[0.63703, 0.63703], precision=[0.06370, 0.06370], hit=[0.63703, 0.63703], ndcg=[0.36909, 0.36909]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 319 [45.9s + 31.3s]: train==[672.63055=672.61218 + 0.01840], recall=[0.64431, 0.64431], precision=[0.06443, 0.06443], hit=[0.64431, 0.64431], ndcg=[0.37310, 0.37310]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 329 [46.4s + 31.7s]: train==[670.31494=670.29553 + 0.01874], recall=[0.63951, 0.63951], precision=[0.06395, 0.06395], hit=[0.63951, 0.63951], ndcg=[0.37221, 0.37221]
INFO:root:Epoch 339 [45.7s + 32.0s]: train==[667.75818=667.73999 + 0.01911], recall=[0.64597, 0.64597], precision=[0.06460, 0.06460], hit=[0.64597, 0.64597], ndcg=[0.37385, 0.37385]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 349 [45.1s + 31.4s]: train==[665.61292=665.59326 + 0.01952], recall=[0.64911, 0.64911], precision=[0.06491, 0.06491], hit=[0.64911, 0.64911], ndcg=[0.37310, 0.37310]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 359 [43.9s + 31.6s]: train==[663.02576=663.00555 + 0.01993], recall=[0.64829, 0.64829], precision=[0.06483, 0.06483], hit=[0.64829, 0.64829], ndcg=[0.37556, 0.37556]
INFO:root:Epoch 369 [44.9s + 31.9s]: train==[660.36542=660.34552 + 0.02037], recall=[0.64978, 0.64978], precision=[0.06498, 0.06498], hit=[0.64978, 0.64978], ndcg=[0.37680, 0.37680]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 379 [44.2s + 32.1s]: train==[657.69055=657.66925 + 0.02086], recall=[0.64978, 0.64978], precision=[0.06498, 0.06498], hit=[0.64978, 0.64978], ndcg=[0.37735, 0.37735]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 389 [44.5s + 31.8s]: train==[655.28870=655.26709 + 0.02134], recall=[0.64762, 0.64762], precision=[0.06476, 0.06476], hit=[0.64762, 0.64762], ndcg=[0.37711, 0.37711]
INFO:root:Epoch 399 [45.1s + 31.9s]: train==[653.15234=653.13104 + 0.02188], recall=[0.64928, 0.64928], precision=[0.06493, 0.06493], hit=[0.64928, 0.64928], ndcg=[0.37756, 0.37756]
INFO:root:Epoch 409 [46.0s + 33.7s]: train==[650.15564=650.13403 + 0.02242], recall=[0.64464, 0.64464], precision=[0.06446, 0.06446], hit=[0.64464, 0.64464], ndcg=[0.37502, 0.37502]
INFO:root:Epoch 419 [46.2s + 31.9s]: train==[646.84802=646.82520 + 0.02299], recall=[0.65243, 0.65243], precision=[0.06524, 0.06524], hit=[0.65243, 0.65243], ndcg=[0.37671, 0.37671]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 429 [41.6s + 30.8s]: train==[643.90497=643.88165 + 0.02359], recall=[0.65060, 0.65060], precision=[0.06506, 0.06506], hit=[0.65060, 0.65060], ndcg=[0.37675, 0.37675]
INFO:root:Epoch 439 [42.3s + 30.1s]: train==[641.17163=641.14771 + 0.02422], recall=[0.65027, 0.65027], precision=[0.06503, 0.06503], hit=[0.65027, 0.65027], ndcg=[0.37912, 0.37912]
INFO:root:Epoch 449 [45.0s + 30.6s]: train==[638.06329=638.03796 + 0.02488], recall=[0.65193, 0.65193], precision=[0.06519, 0.06519], hit=[0.65193, 0.65193], ndcg=[0.37937, 0.37937]
INFO:root:Epoch 459 [43.0s + 29.5s]: train==[635.64343=635.61884 + 0.02555], recall=[0.65557, 0.65557], precision=[0.06556, 0.06556], hit=[0.65557, 0.65557], ndcg=[0.37825, 0.37825]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 469 [46.5s + 31.6s]: train==[631.99078=631.96484 + 0.02624], recall=[0.65590, 0.65590], precision=[0.06559, 0.06559], hit=[0.65590, 0.65590], ndcg=[0.37690, 0.37690]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 479 [42.9s + 30.1s]: train==[627.82123=627.79456 + 0.02697], recall=[0.65524, 0.65524], precision=[0.06552, 0.06552], hit=[0.65524, 0.65524], ndcg=[0.38098, 0.38098]
INFO:root:Epoch 489 [42.6s + 29.5s]: train==[624.56268=624.53503 + 0.02770], recall=[0.65723, 0.65723], precision=[0.06572, 0.06572], hit=[0.65723, 0.65723], ndcg=[0.37924, 0.37924]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 499 [41.9s + 31.1s]: train==[622.05682=622.02875 + 0.02848], recall=[0.65425, 0.65425], precision=[0.06542, 0.06542], hit=[0.65425, 0.65425], ndcg=[0.37656, 0.37656]
INFO:root:Epoch 509 [42.8s + 30.5s]: train==[618.28400=618.25427 + 0.02926], recall=[0.65441, 0.65441], precision=[0.06544, 0.06544], hit=[0.65441, 0.65441], ndcg=[0.37824, 0.37824]
INFO:root:Epoch 519 [41.1s + 30.8s]: train==[614.88916=614.85907 + 0.03008], recall=[0.65623, 0.65623], precision=[0.06562, 0.06562], hit=[0.65623, 0.65623], ndcg=[0.38189, 0.38189]
INFO:root:Epoch 529 [44.8s + 31.3s]: train==[610.57819=610.54700 + 0.03092], recall=[0.66087, 0.66087], precision=[0.06609, 0.06609], hit=[0.66087, 0.66087], ndcg=[0.38050, 0.38050]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 539 [42.8s + 30.7s]: train==[607.08716=607.05511 + 0.03180], recall=[0.65955, 0.65955], precision=[0.06595, 0.06595], hit=[0.65955, 0.65955], ndcg=[0.37922, 0.37922]
INFO:root:Epoch 549 [42.1s + 30.0s]: train==[603.35016=603.31732 + 0.03269], recall=[0.65822, 0.65822], precision=[0.06582, 0.06582], hit=[0.65822, 0.65822], ndcg=[0.38139, 0.38139]
INFO:root:Epoch 559 [42.3s + 28.6s]: train==[600.25336=600.21960 + 0.03362], recall=[0.65309, 0.65309], precision=[0.06531, 0.06531], hit=[0.65309, 0.65309], ndcg=[0.38157, 0.38157]
INFO:root:Epoch 569 [42.0s + 30.2s]: train==[595.80505=595.77026 + 0.03458], recall=[0.66087, 0.66087], precision=[0.06609, 0.06609], hit=[0.66087, 0.66087], ndcg=[0.38156, 0.38156]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 579 [45.4s + 30.5s]: train==[593.02789=592.99249 + 0.03556], recall=[0.65392, 0.65392], precision=[0.06539, 0.06539], hit=[0.65392, 0.65392], ndcg=[0.37911, 0.37911]
INFO:root:Epoch 589 [42.6s + 30.7s]: train==[589.41010=589.37347 + 0.03654], recall=[0.65756, 0.65756], precision=[0.06576, 0.06576], hit=[0.65756, 0.65756], ndcg=[0.38061, 0.38061]
INFO:root:Epoch 599 [45.4s + 28.2s]: train==[585.31903=585.28198 + 0.03753], recall=[0.65839, 0.65839], precision=[0.06584, 0.06584], hit=[0.65839, 0.65839], ndcg=[0.38124, 0.38124]
INFO:root:Epoch 609 [43.5s + 30.8s]: train==[580.87646=580.83777 + 0.03859], recall=[0.65508, 0.65508], precision=[0.06551, 0.06551], hit=[0.65508, 0.65508], ndcg=[0.37765, 0.37765]
INFO:root:Epoch 619 [41.7s + 30.7s]: train==[578.19061=578.15082 + 0.03965], recall=[0.65623, 0.65623], precision=[0.06562, 0.06562], hit=[0.65623, 0.65623], ndcg=[0.38244, 0.38244]
INFO:root:Epoch 629 [41.1s + 29.2s]: train==[573.69055=573.64954 + 0.04073], recall=[0.66269, 0.66269], precision=[0.06627, 0.06627], hit=[0.66269, 0.66269], ndcg=[0.38270, 0.38270]
INFO:root:save the weights in path: model/two_side_graph.pkl
INFO:root:Epoch 639 [42.2s + 30.1s]: train==[570.70807=570.66595 + 0.04189], recall=[0.65623, 0.65623], precision=[0.06562, 0.06562], hit=[0.65623, 0.65623], ndcg=[0.37983, 0.37983]
INFO:root:Epoch 649 [43.2s + 30.5s]: train==[567.01141=566.96844 + 0.04302], recall=[0.65988, 0.65988], precision=[0.06599, 0.06599], hit=[0.65988, 0.65988], ndcg=[0.38173, 0.38173]
INFO:root:Epoch 659 [41.7s + 30.0s]: train==[561.80640=561.76239 + 0.04416], recall=[0.65723, 0.65723], precision=[0.06572, 0.06572], hit=[0.65723, 0.65723], ndcg=[0.38007, 0.38007]
INFO:root:Epoch 669 [42.1s + 32.3s]: train==[557.91290=557.86713 + 0.04535], recall=[0.65408, 0.65408], precision=[0.06541, 0.06541], hit=[0.65408, 0.65408], ndcg=[0.37931, 0.37931]
INFO:root:Epoch 679 [43.7s + 31.5s]: train==[554.92188=554.87555 + 0.04658], recall=[0.65276, 0.65276], precision=[0.06528, 0.06528], hit=[0.65276, 0.65276], ndcg=[0.37994, 0.37994]
INFO:root:Epoch 689 [43.4s + 30.9s]: train==[550.53284=550.48499 + 0.04779], recall=[0.65839, 0.65839], precision=[0.06584, 0.06584], hit=[0.65839, 0.65839], ndcg=[0.38010, 0.38010]
INFO:root:Epoch 699 [42.7s + 30.7s]: train==[547.77917=547.73077 + 0.04905], recall=[0.65690, 0.65690], precision=[0.06569, 0.06569], hit=[0.65690, 0.65690], ndcg=[0.38048, 0.38048]
INFO:root:Epoch 709 [46.9s + 32.8s]: train==[544.86804=544.81750 + 0.05037], recall=[0.65607, 0.65607], precision=[0.06561, 0.06561], hit=[0.65607, 0.65607], ndcg=[0.37919, 0.37919]
INFO:root:Epoch 719 [41.3s + 29.0s]: train==[539.77783=539.72620 + 0.05158], recall=[0.65806, 0.65806], precision=[0.06581, 0.06581], hit=[0.65806, 0.65806], ndcg=[0.37994, 0.37994]
INFO:root:Epoch 729 [43.6s + 31.3s]: train==[537.16064=537.10712 + 0.05299], recall=[0.65806, 0.65806], precision=[0.06581, 0.06581], hit=[0.65806, 0.65806], ndcg=[0.37560, 0.37560]
INFO:root:Best Iter=[62]@[29857.1] recall=[0.66269], precision=[0.06627], hit=[0.66269], ndcg=[0.38270]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [15.2s + 33.8s]: train==[692.87769=692.86194 + 0.01583], recall=[0.21258, 0.21258], precision=[0.02126, 0.02126], hit=[0.21258, 0.21258], ndcg=[0.09727, 0.09727]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [14.5s + 33.3s]: train==[692.58710=692.57153 + 0.01583], recall=[0.21556, 0.21556], precision=[0.02156, 0.02156], hit=[0.21556, 0.21556], ndcg=[0.09896, 0.09896]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [15.9s + 32.6s]: train==[692.11774=692.10199 + 0.01584], recall=[0.22368, 0.22368], precision=[0.02237, 0.02237], hit=[0.22368, 0.22368], ndcg=[0.10166, 0.10166]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=256, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [44.2s + 31.8s]: train==[692.91248=692.89722 + 0.01582], recall=[0.20480, 0.20480], precision=[0.02048, 0.02048], hit=[0.20480, 0.20480], ndcg=[0.09516, 0.09516]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [43.9s + 32.3s]: train==[692.22699=692.21155 + 0.01580], recall=[0.24238, 0.24238], precision=[0.02424, 0.02424], hit=[0.24238, 0.24238], ndcg=[0.11442, 0.11442]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [43.7s + 31.4s]: train==[692.24927=692.23328 + 0.01577], recall=[0.26921, 0.26921], precision=[0.02692, 0.02692], hit=[0.26921, 0.26921], ndcg=[0.12856, 0.12856]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 39 [44.6s + 31.4s]: train==[692.29883=692.28265 + 0.01574], recall=[0.28311, 0.28311], precision=[0.02831, 0.02831], hit=[0.28311, 0.28311], ndcg=[0.13939, 0.13939]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 49 [45.1s + 31.3s]: train==[692.44373=692.42725 + 0.01572], recall=[0.27848, 0.27848], precision=[0.02785, 0.02785], hit=[0.27848, 0.27848], ndcg=[0.13902, 0.13902]
INFO:root:Epoch 59 [42.9s + 31.4s]: train==[692.51917=692.50427 + 0.01571], recall=[0.26970, 0.26970], precision=[0.02697, 0.02697], hit=[0.26970, 0.26970], ndcg=[0.13356, 0.13356]
INFO:root:Epoch 69 [44.4s + 31.6s]: train==[692.60382=692.58838 + 0.01570], recall=[0.26556, 0.26556], precision=[0.02656, 0.02656], hit=[0.26556, 0.26556], ndcg=[0.12896, 0.12896]
INFO:root:Epoch 79 [43.9s + 31.6s]: train==[692.64368=692.62769 + 0.01570], recall=[0.25844, 0.25844], precision=[0.02584, 0.02584], hit=[0.25844, 0.25844], ndcg=[0.12600, 0.12600]
INFO:root:Epoch 89 [44.0s + 31.4s]: train==[692.67950=692.66425 + 0.01570], recall=[0.25811, 0.25811], precision=[0.02581, 0.02581], hit=[0.25811, 0.25811], ndcg=[0.12377, 0.12377]
INFO:root:Epoch 99 [45.5s + 32.0s]: train==[692.66772=692.65179 + 0.01570], recall=[0.25911, 0.25911], precision=[0.02591, 0.02591], hit=[0.25911, 0.25911], ndcg=[0.12718, 0.12718]
INFO:root:Epoch 109 [44.6s + 32.4s]: train==[692.60712=692.59210 + 0.01570], recall=[0.26358, 0.26358], precision=[0.02636, 0.02636], hit=[0.26358, 0.26358], ndcg=[0.12850, 0.12850]
INFO:root:Epoch 119 [44.6s + 30.4s]: train==[692.52252=692.50629 + 0.01571], recall=[0.27533, 0.27533], precision=[0.02753, 0.02753], hit=[0.27533, 0.27533], ndcg=[0.13601, 0.13601]
INFO:root:Epoch 129 [41.8s + 30.0s]: train==[692.40900=692.39264 + 0.01572], recall=[0.28940, 0.28940], precision=[0.02894, 0.02894], hit=[0.28940, 0.28940], ndcg=[0.14536, 0.14536]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 139 [41.8s + 28.5s]: train==[692.25653=692.24152 + 0.01574], recall=[0.30480, 0.30480], precision=[0.03048, 0.03048], hit=[0.30480, 0.30480], ndcg=[0.15650, 0.15650]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 149 [41.5s + 30.7s]: train==[692.07220=692.05676 + 0.01576], recall=[0.32103, 0.32103], precision=[0.03210, 0.03210], hit=[0.32103, 0.32103], ndcg=[0.16808, 0.16808]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 159 [42.0s + 31.1s]: train==[691.81604=691.80096 + 0.01579], recall=[0.35480, 0.35480], precision=[0.03548, 0.03548], hit=[0.35480, 0.35480], ndcg=[0.18660, 0.18660]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 169 [42.2s + 27.7s]: train==[691.55701=691.54065 + 0.01582], recall=[0.38129, 0.38129], precision=[0.03813, 0.03813], hit=[0.38129, 0.38129], ndcg=[0.20905, 0.20905]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 179 [41.5s + 29.6s]: train==[691.16705=691.15009 + 0.01587], recall=[0.40894, 0.40894], precision=[0.04089, 0.04089], hit=[0.40894, 0.40894], ndcg=[0.22904, 0.22904]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 189 [42.2s + 31.5s]: train==[690.74988=690.73438 + 0.01592], recall=[0.44123, 0.44123], precision=[0.04412, 0.04412], hit=[0.44123, 0.44123], ndcg=[0.25160, 0.25160]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 199 [42.1s + 29.6s]: train==[690.24188=690.22552 + 0.01599], recall=[0.47351, 0.47351], precision=[0.04735, 0.04735], hit=[0.47351, 0.47351], ndcg=[0.27637, 0.27637]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 209 [41.2s + 29.5s]: train==[689.71033=689.69440 + 0.01606], recall=[0.49619, 0.49619], precision=[0.04962, 0.04962], hit=[0.49619, 0.49619], ndcg=[0.28946, 0.28946]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 219 [41.8s + 30.2s]: train==[689.00684=688.99109 + 0.01615], recall=[0.52517, 0.52517], precision=[0.05252, 0.05252], hit=[0.52517, 0.52517], ndcg=[0.31115, 0.31115]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 229 [42.8s + 28.7s]: train==[688.26697=688.25018 + 0.01626], recall=[0.54603, 0.54603], precision=[0.05460, 0.05460], hit=[0.54603, 0.54603], ndcg=[0.32079, 0.32079]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 239 [42.4s + 29.3s]: train==[687.39764=687.38123 + 0.01639], recall=[0.56192, 0.56192], precision=[0.05619, 0.05619], hit=[0.56192, 0.56192], ndcg=[0.33090, 0.33090]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 249 [42.0s + 29.5s]: train==[686.44806=686.43176 + 0.01653], recall=[0.58195, 0.58195], precision=[0.05820, 0.05820], hit=[0.58195, 0.58195], ndcg=[0.34351, 0.34351]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 259 [42.9s + 31.7s]: train==[685.34503=685.32776 + 0.01669], recall=[0.59387, 0.59387], precision=[0.05939, 0.05939], hit=[0.59387, 0.59387], ndcg=[0.35017, 0.35017]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 269 [42.5s + 28.5s]: train==[684.08185=684.06494 + 0.01687], recall=[0.60298, 0.60298], precision=[0.06030, 0.06030], hit=[0.60298, 0.60298], ndcg=[0.35455, 0.35455]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 279 [41.7s + 30.2s]: train==[682.80872=682.79175 + 0.01708], recall=[0.60911, 0.60911], precision=[0.06091, 0.06091], hit=[0.60911, 0.60911], ndcg=[0.35614, 0.35614]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 289 [42.0s + 30.2s]: train==[681.42029=681.40326 + 0.01731], recall=[0.61970, 0.61970], precision=[0.06197, 0.06197], hit=[0.61970, 0.61970], ndcg=[0.36419, 0.36419]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 299 [42.8s + 29.5s]: train==[679.80811=679.78955 + 0.01756], recall=[0.62368, 0.62368], precision=[0.06237, 0.06237], hit=[0.62368, 0.62368], ndcg=[0.36268, 0.36268]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 309 [48.4s + 55.1s]: train==[678.20587=678.18829 + 0.01783], recall=[0.63113, 0.63113], precision=[0.06311, 0.06311], hit=[0.63113, 0.63113], ndcg=[0.37046, 0.37046]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 319 [46.1s + 46.2s]: train==[676.32446=676.30609 + 0.01812], recall=[0.63493, 0.63493], precision=[0.06349, 0.06349], hit=[0.63493, 0.63493], ndcg=[0.37144, 0.37144]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 329 [42.2s + 31.8s]: train==[674.46460=674.44678 + 0.01845], recall=[0.64139, 0.64139], precision=[0.06414, 0.06414], hit=[0.64139, 0.64139], ndcg=[0.37510, 0.37510]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 339 [41.5s + 30.3s]: train==[672.44617=672.42755 + 0.01879], recall=[0.64901, 0.64901], precision=[0.06490, 0.06490], hit=[0.64901, 0.64901], ndcg=[0.37553, 0.37553]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 349 [42.8s + 31.2s]: train==[670.10974=670.09076 + 0.01916], recall=[0.64007, 0.64007], precision=[0.06401, 0.06401], hit=[0.64007, 0.64007], ndcg=[0.37593, 0.37593]
INFO:root:Epoch 359 [41.0s + 30.7s]: train==[667.86572=667.84631 + 0.01956], recall=[0.64603, 0.64603], precision=[0.06460, 0.06460], hit=[0.64603, 0.64603], ndcg=[0.37790, 0.37790]
INFO:root:Epoch 369 [41.6s + 31.6s]: train==[665.40112=665.38190 + 0.01998], recall=[0.64851, 0.64851], precision=[0.06485, 0.06485], hit=[0.64851, 0.64851], ndcg=[0.37944, 0.37944]
INFO:root:Epoch 379 [41.3s + 29.9s]: train==[662.45984=662.43915 + 0.02042], recall=[0.65017, 0.65017], precision=[0.06502, 0.06502], hit=[0.65017, 0.65017], ndcg=[0.37819, 0.37819]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 389 [41.2s + 28.3s]: train==[659.72137=659.70044 + 0.02089], recall=[0.65083, 0.65083], precision=[0.06508, 0.06508], hit=[0.65083, 0.65083], ndcg=[0.37648, 0.37648]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 399 [42.4s + 28.2s]: train==[657.26843=657.24695 + 0.02139], recall=[0.65579, 0.65579], precision=[0.06558, 0.06558], hit=[0.65579, 0.65579], ndcg=[0.37896, 0.37896]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 409 [41.7s + 29.5s]: train==[654.13641=654.11523 + 0.02191], recall=[0.65149, 0.65149], precision=[0.06515, 0.06515], hit=[0.65149, 0.65149], ndcg=[0.37753, 0.37753]
INFO:root:Epoch 419 [41.5s + 29.0s]: train==[651.70245=651.68054 + 0.02245], recall=[0.64967, 0.64967], precision=[0.06497, 0.06497], hit=[0.64967, 0.64967], ndcg=[0.37861, 0.37861]
INFO:root:Epoch 429 [42.1s + 29.2s]: train==[647.88916=647.86676 + 0.02301], recall=[0.65199, 0.65199], precision=[0.06520, 0.06520], hit=[0.65199, 0.65199], ndcg=[0.37901, 0.37901]
INFO:root:Epoch 439 [40.9s + 31.6s]: train==[645.84485=645.82202 + 0.02361], recall=[0.65530, 0.65530], precision=[0.06553, 0.06553], hit=[0.65530, 0.65530], ndcg=[0.37966, 0.37966]
INFO:root:Epoch 449 [41.7s + 29.0s]: train==[642.87695=642.85229 + 0.02423], recall=[0.65579, 0.65579], precision=[0.06558, 0.06558], hit=[0.65579, 0.65579], ndcg=[0.37979, 0.37979]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 459 [40.9s + 28.8s]: train==[639.60132=639.57672 + 0.02488], recall=[0.65811, 0.65811], precision=[0.06581, 0.06581], hit=[0.65811, 0.65811], ndcg=[0.37973, 0.37973]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 469 [41.2s + 31.1s]: train==[636.42609=636.40045 + 0.02555], recall=[0.65877, 0.65877], precision=[0.06588, 0.06588], hit=[0.65877, 0.65877], ndcg=[0.38069, 0.38069]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 479 [40.2s + 30.6s]: train==[633.18616=633.15948 + 0.02623], recall=[0.65944, 0.65944], precision=[0.06594, 0.06594], hit=[0.65944, 0.65944], ndcg=[0.37918, 0.37918]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 489 [40.3s + 29.5s]: train==[629.68671=629.65894 + 0.02695], recall=[0.65646, 0.65646], precision=[0.06565, 0.06565], hit=[0.65646, 0.65646], ndcg=[0.38154, 0.38154]
INFO:root:Epoch 499 [41.3s + 28.3s]: train==[627.15167=627.12384 + 0.02770], recall=[0.65596, 0.65596], precision=[0.06560, 0.06560], hit=[0.65596, 0.65596], ndcg=[0.38015, 0.38015]
INFO:root:Epoch 509 [41.3s + 29.4s]: train==[623.69061=623.66125 + 0.02844], recall=[0.65397, 0.65397], precision=[0.06540, 0.06540], hit=[0.65397, 0.65397], ndcg=[0.38160, 0.38160]
INFO:root:Epoch 519 [40.8s + 29.7s]: train==[620.39984=620.36993 + 0.02925], recall=[0.65596, 0.65596], precision=[0.06560, 0.06560], hit=[0.65596, 0.65596], ndcg=[0.37737, 0.37737]
INFO:root:Epoch 529 [40.3s + 28.3s]: train==[616.61884=616.58893 + 0.03008], recall=[0.65546, 0.65546], precision=[0.06555, 0.06555], hit=[0.65546, 0.65546], ndcg=[0.38016, 0.38016]
INFO:root:Epoch 539 [41.4s + 31.7s]: train==[613.06860=613.03741 + 0.03091], recall=[0.65877, 0.65877], precision=[0.06588, 0.06588], hit=[0.65877, 0.65877], ndcg=[0.38374, 0.38374]
INFO:root:Epoch 549 [41.6s + 30.4s]: train==[608.87488=608.84283 + 0.03177], recall=[0.65894, 0.65894], precision=[0.06589, 0.06589], hit=[0.65894, 0.65894], ndcg=[0.37968, 0.37968]
INFO:root:Epoch 559 [41.0s + 30.5s]: train==[606.10468=606.07202 + 0.03267], recall=[0.66523, 0.66523], precision=[0.06652, 0.06652], hit=[0.66523, 0.66523], ndcg=[0.38118, 0.38118]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 569 [40.7s + 27.6s]: train==[602.44788=602.41425 + 0.03361], recall=[0.66242, 0.66242], precision=[0.06624, 0.06624], hit=[0.66242, 0.66242], ndcg=[0.38165, 0.38165]
INFO:root:Epoch 579 [41.3s + 29.1s]: train==[597.98920=597.95502 + 0.03454], recall=[0.65513, 0.65513], precision=[0.06551, 0.06551], hit=[0.65513, 0.65513], ndcg=[0.37861, 0.37861]
INFO:root:Epoch 589 [41.0s + 30.5s]: train==[594.17468=594.13861 + 0.03548], recall=[0.65414, 0.65414], precision=[0.06541, 0.06541], hit=[0.65414, 0.65414], ndcg=[0.38012, 0.38012]
INFO:root:Epoch 599 [41.6s + 29.5s]: train==[591.13116=591.09424 + 0.03649], recall=[0.66275, 0.66275], precision=[0.06627, 0.06627], hit=[0.66275, 0.66275], ndcg=[0.38375, 0.38375]
INFO:root:Epoch 609 [41.0s + 27.7s]: train==[587.27679=587.23907 + 0.03752], recall=[0.65877, 0.65877], precision=[0.06588, 0.06588], hit=[0.65877, 0.65877], ndcg=[0.38239, 0.38239]
INFO:root:Epoch 619 [41.1s + 28.3s]: train==[583.25153=583.21277 + 0.03858], recall=[0.65944, 0.65944], precision=[0.06594, 0.06594], hit=[0.65944, 0.65944], ndcg=[0.38237, 0.38237]
INFO:root:Epoch 629 [41.5s + 27.3s]: train==[579.71741=579.67773 + 0.03962], recall=[0.65960, 0.65960], precision=[0.06596, 0.06596], hit=[0.65960, 0.65960], ndcg=[0.38140, 0.38140]
INFO:root:Epoch 639 [41.6s + 29.2s]: train==[574.54138=574.50043 + 0.04071], recall=[0.65828, 0.65828], precision=[0.06583, 0.06583], hit=[0.65828, 0.65828], ndcg=[0.38540, 0.38540]
INFO:root:Epoch 649 [42.6s + 30.5s]: train==[571.00623=570.96423 + 0.04183], recall=[0.66043, 0.66043], precision=[0.06604, 0.06604], hit=[0.66043, 0.66043], ndcg=[0.37900, 0.37900]
INFO:root:Epoch 659 [40.6s + 30.8s]: train==[567.71198=567.66925 + 0.04297], recall=[0.65811, 0.65811], precision=[0.06581, 0.06581], hit=[0.65811, 0.65811], ndcg=[0.38049, 0.38049]
INFO:root:Best Iter=[55]@[26221.6] recall=[0.66523], precision=[0.06652], hit=[0.66523], ndcg=[0.38118]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=30, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [30.3s + 30.6s]: train==[693.08124=693.06488 + 0.01583], recall=[0.19520, 0.19520], precision=[0.01952, 0.01952], hit=[0.19520, 0.19520], ndcg=[0.09097, 0.09097]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [31.3s + 30.0s]: train==[692.61731=692.60187 + 0.01582], recall=[0.22268, 0.22268], precision=[0.02227, 0.02227], hit=[0.22268, 0.22268], ndcg=[0.10605, 0.10605]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [31.6s + 29.9s]: train==[691.73993=691.72375 + 0.01581], recall=[0.25695, 0.25695], precision=[0.02570, 0.02570], hit=[0.25695, 0.25695], ndcg=[0.12656, 0.12656]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 39 [31.1s + 31.0s]: train==[691.19458=691.17859 + 0.01580], recall=[0.29288, 0.29288], precision=[0.02929, 0.02929], hit=[0.29288, 0.29288], ndcg=[0.15066, 0.15066]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 49 [30.0s + 32.2s]: train==[691.39233=691.37732 + 0.01578], recall=[0.31937, 0.31937], precision=[0.03194, 0.03194], hit=[0.31937, 0.31937], ndcg=[0.16813, 0.16813]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 59 [32.3s + 29.3s]: train==[691.61639=691.60138 + 0.01576], recall=[0.32119, 0.32119], precision=[0.03212, 0.03212], hit=[0.32119, 0.32119], ndcg=[0.17342, 0.17342]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 69 [30.7s + 31.2s]: train==[691.75354=691.73822 + 0.01575], recall=[0.31921, 0.31921], precision=[0.03192, 0.03192], hit=[0.31921, 0.31921], ndcg=[0.17292, 0.17292]
INFO:root:Epoch 79 [31.1s + 28.7s]: train==[691.91656=691.90131 + 0.01573], recall=[0.31970, 0.31970], precision=[0.03197, 0.03197], hit=[0.31970, 0.31970], ndcg=[0.17400, 0.17400]
INFO:root:Epoch 89 [30.9s + 28.9s]: train==[692.07721=692.06116 + 0.01572], recall=[0.30911, 0.30911], precision=[0.03091, 0.03091], hit=[0.30911, 0.30911], ndcg=[0.16843, 0.16843]
INFO:root:Epoch 99 [31.2s + 30.3s]: train==[692.15521=692.13971 + 0.01571], recall=[0.30199, 0.30199], precision=[0.03020, 0.03020], hit=[0.30199, 0.30199], ndcg=[0.16185, 0.16185]
INFO:root:Epoch 109 [31.4s + 32.5s]: train==[692.28943=692.27399 + 0.01571], recall=[0.29570, 0.29570], precision=[0.02957, 0.02957], hit=[0.29570, 0.29570], ndcg=[0.15635, 0.15635]
INFO:root:Epoch 119 [30.4s + 31.1s]: train==[692.35223=692.33704 + 0.01570], recall=[0.28311, 0.28311], precision=[0.02831, 0.02831], hit=[0.28311, 0.28311], ndcg=[0.14953, 0.14953]
INFO:root:Epoch 129 [31.1s + 29.7s]: train==[692.43402=692.41895 + 0.01570], recall=[0.28063, 0.28063], precision=[0.02806, 0.02806], hit=[0.28063, 0.28063], ndcg=[0.14415, 0.14415]
INFO:root:Epoch 139 [31.2s + 31.4s]: train==[692.45276=692.43671 + 0.01570], recall=[0.27334, 0.27334], precision=[0.02733, 0.02733], hit=[0.27334, 0.27334], ndcg=[0.13821, 0.13821]
INFO:root:Epoch 149 [31.0s + 32.3s]: train==[692.48816=692.47327 + 0.01570], recall=[0.27334, 0.27334], precision=[0.02733, 0.02733], hit=[0.27334, 0.27334], ndcg=[0.13802, 0.13802]
INFO:root:Epoch 159 [31.2s + 29.5s]: train==[692.50391=692.48779 + 0.01570], recall=[0.26788, 0.26788], precision=[0.02679, 0.02679], hit=[0.26788, 0.26788], ndcg=[0.13354, 0.13354]
INFO:root:Epoch 169 [31.6s + 29.0s]: train==[692.49365=692.47729 + 0.01570], recall=[0.26722, 0.26722], precision=[0.02672, 0.02672], hit=[0.26722, 0.26722], ndcg=[0.13362, 0.13362]
INFO:root:Epoch 179 [30.7s + 30.6s]: train==[692.47845=692.46332 + 0.01570], recall=[0.26970, 0.26970], precision=[0.02697, 0.02697], hit=[0.26970, 0.26970], ndcg=[0.13488, 0.13488]
INFO:root:Epoch 189 [31.3s + 30.3s]: train==[692.42712=692.41095 + 0.01570], recall=[0.27235, 0.27235], precision=[0.02724, 0.02724], hit=[0.27235, 0.27235], ndcg=[0.13648, 0.13648]
INFO:root:Epoch 199 [31.2s + 30.9s]: train==[692.38043=692.36438 + 0.01571], recall=[0.27384, 0.27384], precision=[0.02738, 0.02738], hit=[0.27384, 0.27384], ndcg=[0.13750, 0.13750]
INFO:root:Epoch 209 [30.5s + 29.9s]: train==[692.36115=692.34515 + 0.01572], recall=[0.28146, 0.28146], precision=[0.02815, 0.02815], hit=[0.28146, 0.28146], ndcg=[0.14078, 0.14078]
INFO:root:Epoch 219 [30.8s + 30.3s]: train==[692.26453=692.24841 + 0.01573], recall=[0.28576, 0.28576], precision=[0.02858, 0.02858], hit=[0.28576, 0.28576], ndcg=[0.14609, 0.14609]
INFO:root:Epoch 229 [30.4s + 31.0s]: train==[692.19244=692.17603 + 0.01574], recall=[0.29652, 0.29652], precision=[0.02965, 0.02965], hit=[0.29652, 0.29652], ndcg=[0.15175, 0.15175]
INFO:root:Epoch 239 [30.5s + 30.8s]: train==[692.11932=692.10364 + 0.01575], recall=[0.30712, 0.30712], precision=[0.03071, 0.03071], hit=[0.30712, 0.30712], ndcg=[0.15988, 0.15988]
INFO:root:Epoch 249 [31.1s + 31.5s]: train==[691.98322=691.96802 + 0.01577], recall=[0.31755, 0.31755], precision=[0.03175, 0.03175], hit=[0.31755, 0.31755], ndcg=[0.16527, 0.16527]
INFO:root:Epoch 259 [30.9s + 30.7s]: train==[691.89850=691.88251 + 0.01579], recall=[0.33146, 0.33146], precision=[0.03315, 0.03315], hit=[0.33146, 0.33146], ndcg=[0.17618, 0.17618]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 269 [30.5s + 31.9s]: train==[691.73645=691.72064 + 0.01581], recall=[0.34354, 0.34354], precision=[0.03435, 0.03435], hit=[0.34354, 0.34354], ndcg=[0.18575, 0.18575]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 279 [31.0s + 30.4s]: train==[691.53564=691.52075 + 0.01583], recall=[0.35877, 0.35877], precision=[0.03588, 0.03588], hit=[0.35877, 0.35877], ndcg=[0.19639, 0.19639]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 289 [31.9s + 29.1s]: train==[691.35980=691.34332 + 0.01586], recall=[0.37848, 0.37848], precision=[0.03785, 0.03785], hit=[0.37848, 0.37848], ndcg=[0.21167, 0.21167]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 299 [30.6s + 31.0s]: train==[691.18799=691.17188 + 0.01589], recall=[0.39719, 0.39719], precision=[0.03972, 0.03972], hit=[0.39719, 0.39719], ndcg=[0.22205, 0.22205]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 309 [33.8s + 31.3s]: train==[690.93262=690.91705 + 0.01593], recall=[0.41225, 0.41225], precision=[0.04123, 0.04123], hit=[0.41225, 0.41225], ndcg=[0.23356, 0.23356]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 319 [31.2s + 30.2s]: train==[690.68170=690.66522 + 0.01596], recall=[0.42798, 0.42798], precision=[0.04280, 0.04280], hit=[0.42798, 0.42798], ndcg=[0.24677, 0.24677]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 329 [31.4s + 31.1s]: train==[690.45367=690.43835 + 0.01601], recall=[0.44950, 0.44950], precision=[0.04495, 0.04495], hit=[0.44950, 0.44950], ndcg=[0.25974, 0.25974]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 339 [31.4s + 29.3s]: train==[690.11908=690.10309 + 0.01606], recall=[0.46904, 0.46904], precision=[0.04690, 0.04690], hit=[0.46904, 0.46904], ndcg=[0.27504, 0.27504]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 349 [32.0s + 30.8s]: train==[689.79346=689.77771 + 0.01611], recall=[0.48444, 0.48444], precision=[0.04844, 0.04844], hit=[0.48444, 0.48444], ndcg=[0.28380, 0.28380]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 359 [30.8s + 29.5s]: train==[689.42206=689.40558 + 0.01617], recall=[0.49884, 0.49884], precision=[0.04988, 0.04988], hit=[0.49884, 0.49884], ndcg=[0.29465, 0.29465]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 369 [31.2s + 30.1s]: train==[689.04010=689.02423 + 0.01623], recall=[0.51772, 0.51772], precision=[0.05177, 0.05177], hit=[0.51772, 0.51772], ndcg=[0.30648, 0.30648]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 379 [32.0s + 30.6s]: train==[688.58148=688.56592 + 0.01631], recall=[0.52450, 0.52450], precision=[0.05245, 0.05245], hit=[0.52450, 0.52450], ndcg=[0.31136, 0.31136]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 389 [30.3s + 30.3s]: train==[688.18262=688.16681 + 0.01639], recall=[0.53891, 0.53891], precision=[0.05389, 0.05389], hit=[0.53891, 0.53891], ndcg=[0.32015, 0.32015]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 399 [30.8s + 30.1s]: train==[687.64050=687.62372 + 0.01647], recall=[0.55430, 0.55430], precision=[0.05543, 0.05543], hit=[0.55430, 0.55430], ndcg=[0.32832, 0.32832]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 409 [31.7s + 30.3s]: train==[687.12128=687.10394 + 0.01657], recall=[0.55745, 0.55745], precision=[0.05575, 0.05575], hit=[0.55745, 0.55745], ndcg=[0.33491, 0.33491]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 419 [31.0s + 30.5s]: train==[686.62500=686.60773 + 0.01667], recall=[0.57517, 0.57517], precision=[0.05752, 0.05752], hit=[0.57517, 0.57517], ndcg=[0.34112, 0.34112]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 429 [31.1s + 31.5s]: train==[685.91522=685.89844 + 0.01677], recall=[0.57997, 0.57997], precision=[0.05800, 0.05800], hit=[0.57997, 0.57997], ndcg=[0.34331, 0.34331]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 439 [30.8s + 30.9s]: train==[685.30249=685.28589 + 0.01690], recall=[0.59321, 0.59321], precision=[0.05932, 0.05932], hit=[0.59321, 0.59321], ndcg=[0.34885, 0.34885]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 449 [31.8s + 28.5s]: train==[684.62714=684.61035 + 0.01703], recall=[0.59818, 0.59818], precision=[0.05982, 0.05982], hit=[0.59818, 0.59818], ndcg=[0.35377, 0.35377]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 459 [30.6s + 27.6s]: train==[683.81903=683.80048 + 0.01717], recall=[0.60348, 0.60348], precision=[0.06035, 0.06035], hit=[0.60348, 0.60348], ndcg=[0.35470, 0.35470]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 469 [32.3s + 30.8s]: train==[683.18274=683.16602 + 0.01732], recall=[0.60596, 0.60596], precision=[0.06060, 0.06060], hit=[0.60596, 0.60596], ndcg=[0.36027, 0.36027]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 479 [31.1s + 30.0s]: train==[682.18530=682.16827 + 0.01747], recall=[0.61705, 0.61705], precision=[0.06171, 0.06171], hit=[0.61705, 0.61705], ndcg=[0.36301, 0.36301]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 489 [32.9s + 30.3s]: train==[681.15942=681.14178 + 0.01765], recall=[0.62152, 0.62152], precision=[0.06215, 0.06215], hit=[0.62152, 0.62152], ndcg=[0.36441, 0.36441]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 499 [33.1s + 30.3s]: train==[680.36310=680.34540 + 0.01783], recall=[0.62434, 0.62434], precision=[0.06243, 0.06243], hit=[0.62434, 0.62434], ndcg=[0.36778, 0.36778]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 509 [32.7s + 29.8s]: train==[679.27734=679.25934 + 0.01803], recall=[0.62268, 0.62268], precision=[0.06227, 0.06227], hit=[0.62268, 0.62268], ndcg=[0.36671, 0.36671]
INFO:root:Epoch 519 [32.0s + 30.2s]: train==[678.19275=678.17450 + 0.01823], recall=[0.62781, 0.62781], precision=[0.06278, 0.06278], hit=[0.62781, 0.62781], ndcg=[0.37061, 0.37061]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 529 [31.4s + 28.3s]: train==[676.92572=676.90631 + 0.01845], recall=[0.62848, 0.62848], precision=[0.06285, 0.06285], hit=[0.62848, 0.62848], ndcg=[0.36888, 0.36888]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 539 [32.0s + 30.9s]: train==[675.68903=675.66986 + 0.01867], recall=[0.62980, 0.62980], precision=[0.06298, 0.06298], hit=[0.62980, 0.62980], ndcg=[0.36861, 0.36861]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 549 [32.2s + 30.7s]: train==[674.47308=674.45428 + 0.01892], recall=[0.63924, 0.63924], precision=[0.06392, 0.06392], hit=[0.63924, 0.63924], ndcg=[0.37294, 0.37294]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 559 [31.6s + 28.9s]: train==[673.13965=673.12012 + 0.01916], recall=[0.64056, 0.64056], precision=[0.06406, 0.06406], hit=[0.64056, 0.64056], ndcg=[0.37099, 0.37099]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 569 [30.7s + 30.1s]: train==[671.57129=671.55206 + 0.01943], recall=[0.64023, 0.64023], precision=[0.06402, 0.06402], hit=[0.64023, 0.64023], ndcg=[0.37239, 0.37239]
INFO:root:Epoch 579 [30.4s + 30.9s]: train==[670.19470=670.17419 + 0.01971], recall=[0.63709, 0.63709], precision=[0.06371, 0.06371], hit=[0.63709, 0.63709], ndcg=[0.37288, 0.37288]
INFO:root:Epoch 589 [32.0s + 29.5s]: train==[668.81158=668.79169 + 0.01999], recall=[0.63907, 0.63907], precision=[0.06391, 0.06391], hit=[0.63907, 0.63907], ndcg=[0.37359, 0.37359]
INFO:root:Epoch 599 [33.7s + 30.1s]: train==[667.69275=667.67249 + 0.02029], recall=[0.64222, 0.64222], precision=[0.06422, 0.06422], hit=[0.64222, 0.64222], ndcg=[0.37467, 0.37467]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 609 [32.0s + 31.2s]: train==[666.76318=666.74268 + 0.02061], recall=[0.64520, 0.64520], precision=[0.06452, 0.06452], hit=[0.64520, 0.64520], ndcg=[0.37476, 0.37476]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 619 [32.2s + 31.2s]: train==[665.32751=665.30750 + 0.02094], recall=[0.64719, 0.64719], precision=[0.06472, 0.06472], hit=[0.64719, 0.64719], ndcg=[0.37794, 0.37794]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 629 [32.5s + 31.9s]: train==[663.26190=663.23999 + 0.02126], recall=[0.64238, 0.64238], precision=[0.06424, 0.06424], hit=[0.64238, 0.64238], ndcg=[0.37572, 0.37572]
INFO:root:Epoch 639 [31.2s + 31.5s]: train==[661.97015=661.94873 + 0.02161], recall=[0.64205, 0.64205], precision=[0.06421, 0.06421], hit=[0.64205, 0.64205], ndcg=[0.37398, 0.37398]
INFO:root:Epoch 649 [31.0s + 29.9s]: train==[660.78552=660.76373 + 0.02197], recall=[0.64222, 0.64222], precision=[0.06422, 0.06422], hit=[0.64222, 0.64222], ndcg=[0.37848, 0.37848]
INFO:root:Epoch 659 [32.1s + 29.0s]: train==[659.78632=659.76428 + 0.02234], recall=[0.64735, 0.64735], precision=[0.06474, 0.06474], hit=[0.64735, 0.64735], ndcg=[0.37620, 0.37620]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 669 [31.0s + 30.6s]: train==[658.50848=658.48621 + 0.02272], recall=[0.64603, 0.64603], precision=[0.06460, 0.06460], hit=[0.64603, 0.64603], ndcg=[0.37618, 0.37618]
INFO:root:Epoch 679 [33.2s + 31.6s]: train==[656.44800=656.42401 + 0.02312], recall=[0.64702, 0.64702], precision=[0.06470, 0.06470], hit=[0.64702, 0.64702], ndcg=[0.37641, 0.37641]
INFO:root:Epoch 689 [34.6s + 31.6s]: train==[655.32898=655.30591 + 0.02353], recall=[0.65116, 0.65116], precision=[0.06512, 0.06512], hit=[0.65116, 0.65116], ndcg=[0.37680, 0.37680]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 699 [35.4s + 33.8s]: train==[653.89832=653.87451 + 0.02394], recall=[0.64967, 0.64967], precision=[0.06497, 0.06497], hit=[0.64967, 0.64967], ndcg=[0.37893, 0.37893]
INFO:root:Epoch 709 [34.6s + 32.5s]: train==[652.77527=652.75110 + 0.02438], recall=[0.65381, 0.65381], precision=[0.06538, 0.06538], hit=[0.65381, 0.65381], ndcg=[0.38085, 0.38085]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 719 [33.7s + 33.9s]: train==[650.59363=650.56940 + 0.02481], recall=[0.64901, 0.64901], precision=[0.06490, 0.06490], hit=[0.64901, 0.64901], ndcg=[0.37796, 0.37796]
INFO:root:Epoch 729 [34.0s + 32.8s]: train==[649.38171=649.35583 + 0.02528], recall=[0.64338, 0.64338], precision=[0.06434, 0.06434], hit=[0.64338, 0.64338], ndcg=[0.37538, 0.37538]
INFO:root:Epoch 739 [35.7s + 34.4s]: train==[647.65405=647.62854 + 0.02575], recall=[0.65099, 0.65099], precision=[0.06510, 0.06510], hit=[0.65099, 0.65099], ndcg=[0.37846, 0.37846]
INFO:root:Epoch 749 [34.6s + 32.1s]: train==[645.73041=645.70331 + 0.02622], recall=[0.64818, 0.64818], precision=[0.06482, 0.06482], hit=[0.64818, 0.64818], ndcg=[0.37861, 0.37861]
INFO:root:Epoch 759 [34.0s + 31.8s]: train==[644.28094=644.25311 + 0.02671], recall=[0.65149, 0.65149], precision=[0.06515, 0.06515], hit=[0.65149, 0.65149], ndcg=[0.37751, 0.37751]
INFO:root:Epoch 769 [35.3s + 29.9s]: train==[642.30035=642.27460 + 0.02720], recall=[0.65281, 0.65281], precision=[0.06528, 0.06528], hit=[0.65281, 0.65281], ndcg=[0.38172, 0.38172]
INFO:root:Epoch 779 [32.1s + 34.2s]: train==[640.55286=640.52515 + 0.02771], recall=[0.65513, 0.65513], precision=[0.06551, 0.06551], hit=[0.65513, 0.65513], ndcg=[0.38086, 0.38086]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 789 [32.3s + 32.9s]: train==[638.91943=638.89056 + 0.02825], recall=[0.65099, 0.65099], precision=[0.06510, 0.06510], hit=[0.65099, 0.65099], ndcg=[0.37855, 0.37855]
INFO:root:Epoch 799 [36.1s + 32.4s]: train==[637.73279=637.70416 + 0.02880], recall=[0.65497, 0.65497], precision=[0.06550, 0.06550], hit=[0.65497, 0.65497], ndcg=[0.38079, 0.38079]
INFO:root:Epoch 809 [34.3s + 32.1s]: train==[634.80591=634.77698 + 0.02932], recall=[0.64834, 0.64834], precision=[0.06483, 0.06483], hit=[0.64834, 0.64834], ndcg=[0.37960, 0.37960]
INFO:root:Epoch 819 [34.1s + 31.4s]: train==[633.30585=633.27637 + 0.02989], recall=[0.65182, 0.65182], precision=[0.06518, 0.06518], hit=[0.65182, 0.65182], ndcg=[0.37895, 0.37895]
INFO:root:Epoch 829 [34.2s + 32.0s]: train==[631.67035=631.64093 + 0.03046], recall=[0.65464, 0.65464], precision=[0.06546, 0.06546], hit=[0.65464, 0.65464], ndcg=[0.38103, 0.38103]
INFO:root:Epoch 839 [34.0s + 31.3s]: train==[630.13660=630.10596 + 0.03106], recall=[0.65530, 0.65530], precision=[0.06553, 0.06553], hit=[0.65530, 0.65530], ndcg=[0.38056, 0.38056]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 849 [35.5s + 31.8s]: train==[628.56226=628.53064 + 0.03166], recall=[0.65712, 0.65712], precision=[0.06571, 0.06571], hit=[0.65712, 0.65712], ndcg=[0.38224, 0.38224]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 859 [35.7s + 32.4s]: train==[626.38678=626.35382 + 0.03226], recall=[0.65248, 0.65248], precision=[0.06525, 0.06525], hit=[0.65248, 0.65248], ndcg=[0.37993, 0.37993]
INFO:root:Epoch 869 [34.8s + 31.4s]: train==[624.63086=624.59839 + 0.03289], recall=[0.65579, 0.65579], precision=[0.06558, 0.06558], hit=[0.65579, 0.65579], ndcg=[0.38009, 0.38009]
INFO:root:Epoch 879 [35.3s + 33.2s]: train==[622.33057=622.29712 + 0.03351], recall=[0.65364, 0.65364], precision=[0.06536, 0.06536], hit=[0.65364, 0.65364], ndcg=[0.37980, 0.37980]
INFO:root:Epoch 889 [35.1s + 32.1s]: train==[620.38495=620.35022 + 0.03414], recall=[0.65447, 0.65447], precision=[0.06545, 0.06545], hit=[0.65447, 0.65447], ndcg=[0.37995, 0.37995]
INFO:root:Epoch 899 [35.2s + 31.5s]: train==[618.30408=618.26910 + 0.03480], recall=[0.65861, 0.65861], precision=[0.06586, 0.06586], hit=[0.65861, 0.65861], ndcg=[0.38331, 0.38331]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 909 [34.8s + 29.4s]: train==[616.61920=616.58441 + 0.03550], recall=[0.65182, 0.65182], precision=[0.06518, 0.06518], hit=[0.65182, 0.65182], ndcg=[0.38015, 0.38015]
INFO:root:Epoch 919 [31.9s + 31.5s]: train==[614.34247=614.30646 + 0.03616], recall=[0.65199, 0.65199], precision=[0.06520, 0.06520], hit=[0.65199, 0.65199], ndcg=[0.37965, 0.37965]
INFO:root:Epoch 929 [34.4s + 32.2s]: train==[611.44214=611.40540 + 0.03685], recall=[0.65281, 0.65281], precision=[0.06528, 0.06528], hit=[0.65281, 0.65281], ndcg=[0.38098, 0.38098]
INFO:root:Epoch 939 [34.5s + 32.4s]: train==[610.25995=610.22247 + 0.03756], recall=[0.65066, 0.65066], precision=[0.06507, 0.06507], hit=[0.65066, 0.65066], ndcg=[0.37575, 0.37575]
INFO:root:Epoch 949 [32.7s + 31.7s]: train==[607.78558=607.74707 + 0.03828], recall=[0.65083, 0.65083], precision=[0.06508, 0.06508], hit=[0.65083, 0.65083], ndcg=[0.38039, 0.38039]
INFO:root:Epoch 959 [34.4s + 32.0s]: train==[605.95081=605.91180 + 0.03901], recall=[0.65298, 0.65298], precision=[0.06530, 0.06530], hit=[0.65298, 0.65298], ndcg=[0.37920, 0.37920]
INFO:root:Epoch 969 [33.7s + 31.7s]: train==[603.50848=603.46832 + 0.03974], recall=[0.65646, 0.65646], precision=[0.06565, 0.06565], hit=[0.65646, 0.65646], ndcg=[0.38115, 0.38115]
INFO:root:Epoch 979 [31.7s + 29.8s]: train==[601.23969=601.19891 + 0.04050], recall=[0.65430, 0.65430], precision=[0.06543, 0.06543], hit=[0.65430, 0.65430], ndcg=[0.37966, 0.37966]
INFO:root:Epoch 989 [31.8s + 30.7s]: train==[599.47595=599.43433 + 0.04127], recall=[0.65811, 0.65811], precision=[0.06581, 0.06581], hit=[0.65811, 0.65811], ndcg=[0.38339, 0.38339]
INFO:root:Epoch 999 [33.1s + 30.9s]: train==[597.71942=597.67804 + 0.04205], recall=[0.65348, 0.65348], precision=[0.06535, 0.06535], hit=[0.65348, 0.65348], ndcg=[0.37771, 0.37771]
INFO:root:Epoch 1009 [31.7s + 30.7s]: train==[595.17920=595.13727 + 0.04285], recall=[0.65745, 0.65745], precision=[0.06575, 0.06575], hit=[0.65745, 0.65745], ndcg=[0.38196, 0.38196]
INFO:root:Epoch 1019 [35.8s + 33.1s]: train==[592.49371=592.44940 + 0.04361], recall=[0.65563, 0.65563], precision=[0.06556, 0.06556], hit=[0.65563, 0.65563], ndcg=[0.38059, 0.38059]
INFO:root:Epoch 1029 [33.9s + 32.5s]: train==[591.02002=590.97595 + 0.04442], recall=[0.66126, 0.66126], precision=[0.06613, 0.06613], hit=[0.66126, 0.66126], ndcg=[0.38315, 0.38315]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 1039 [34.6s + 33.1s]: train==[588.59546=588.54944 + 0.04526], recall=[0.65762, 0.65762], precision=[0.06576, 0.06576], hit=[0.65762, 0.65762], ndcg=[0.38248, 0.38248]
INFO:root:Epoch 1049 [33.6s + 32.6s]: train==[586.16833=586.12201 + 0.04607], recall=[0.65331, 0.65331], precision=[0.06533, 0.06533], hit=[0.65331, 0.65331], ndcg=[0.37698, 0.37698]
INFO:root:Epoch 1059 [34.0s + 32.6s]: train==[584.31573=584.26801 + 0.04694], recall=[0.65646, 0.65646], precision=[0.06565, 0.06565], hit=[0.65646, 0.65646], ndcg=[0.38028, 0.38028]
INFO:root:Epoch 1069 [33.9s + 32.8s]: train==[581.82196=581.77429 + 0.04779], recall=[0.65927, 0.65927], precision=[0.06593, 0.06593], hit=[0.65927, 0.65927], ndcg=[0.37859, 0.37859]
INFO:root:Epoch 1079 [34.6s + 32.6s]: train==[579.39154=579.34283 + 0.04863], recall=[0.65563, 0.65563], precision=[0.06556, 0.06556], hit=[0.65563, 0.65563], ndcg=[0.38080, 0.38080]
INFO:root:Epoch 1089 [34.0s + 31.4s]: train==[577.83246=577.78339 + 0.04953], recall=[0.66291, 0.66291], precision=[0.06629, 0.06629], hit=[0.66291, 0.66291], ndcg=[0.38266, 0.38266]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 1099 [34.1s + 29.6s]: train==[575.50214=575.45172 + 0.05046], recall=[0.65662, 0.65662], precision=[0.06566, 0.06566], hit=[0.65662, 0.65662], ndcg=[0.37816, 0.37816]
INFO:root:Epoch 1109 [34.0s + 30.1s]: train==[573.37506=573.32379 + 0.05137], recall=[0.65613, 0.65613], precision=[0.06561, 0.06561], hit=[0.65613, 0.65613], ndcg=[0.37987, 0.37987]
INFO:root:Epoch 1119 [33.0s + 31.4s]: train==[570.78833=570.73669 + 0.05226], recall=[0.65762, 0.65762], precision=[0.06576, 0.06576], hit=[0.65762, 0.65762], ndcg=[0.37904, 0.37904]
INFO:root:Epoch 1129 [33.6s + 31.8s]: train==[568.35010=568.29663 + 0.05319], recall=[0.64950, 0.64950], precision=[0.06495, 0.06495], hit=[0.64950, 0.64950], ndcg=[0.37839, 0.37839]
INFO:root:Epoch 1139 [34.8s + 33.0s]: train==[567.19696=567.14258 + 0.05421], recall=[0.65662, 0.65662], precision=[0.06566, 0.06566], hit=[0.65662, 0.65662], ndcg=[0.38204, 0.38204]
INFO:root:Epoch 1149 [36.3s + 32.4s]: train==[563.68091=563.62640 + 0.05505], recall=[0.66291, 0.66291], precision=[0.06629, 0.06629], hit=[0.66291, 0.66291], ndcg=[0.38227, 0.38227]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 1159 [35.6s + 32.6s]: train==[561.61682=561.56073 + 0.05605], recall=[0.65927, 0.65927], precision=[0.06593, 0.06593], hit=[0.65927, 0.65927], ndcg=[0.38075, 0.38075]
INFO:root:Epoch 1169 [34.7s + 32.5s]: train==[559.70154=559.64459 + 0.05699], recall=[0.65728, 0.65728], precision=[0.06573, 0.06573], hit=[0.65728, 0.65728], ndcg=[0.37782, 0.37782]
INFO:root:Epoch 1179 [34.7s + 33.1s]: train==[557.11542=557.05768 + 0.05797], recall=[0.66159, 0.66159], precision=[0.06616, 0.06616], hit=[0.66159, 0.66159], ndcg=[0.38270, 0.38270]
INFO:root:Epoch 1189 [33.4s + 32.3s]: train==[554.35767=554.29852 + 0.05895], recall=[0.66076, 0.66076], precision=[0.06608, 0.06608], hit=[0.66076, 0.66076], ndcg=[0.38048, 0.38048]
INFO:root:Epoch 1199 [35.2s + 32.7s]: train==[552.55438=552.49445 + 0.05995], recall=[0.65745, 0.65745], precision=[0.06575, 0.06575], hit=[0.65745, 0.65745], ndcg=[0.38262, 0.38262]
INFO:root:Epoch 1209 [34.3s + 32.3s]: train==[550.18347=550.12244 + 0.06102], recall=[0.65513, 0.65513], precision=[0.06551, 0.06551], hit=[0.65513, 0.65513], ndcg=[0.38046, 0.38046]
INFO:root:Epoch 1219 [34.6s + 33.5s]: train==[548.34180=548.27985 + 0.06200], recall=[0.66175, 0.66175], precision=[0.06618, 0.06618], hit=[0.66175, 0.66175], ndcg=[0.38395, 0.38395]
INFO:root:Epoch 1229 [33.9s + 33.6s]: train==[546.69269=546.62946 + 0.06308], recall=[0.65480, 0.65480], precision=[0.06548, 0.06548], hit=[0.65480, 0.65480], ndcg=[0.37995, 0.37995]
INFO:root:Epoch 1239 [34.2s + 32.4s]: train==[544.98987=544.92590 + 0.06409], recall=[0.65828, 0.65828], precision=[0.06583, 0.06583], hit=[0.65828, 0.65828], ndcg=[0.38410, 0.38410]
INFO:root:Epoch 1249 [33.9s + 33.3s]: train==[543.21472=543.14948 + 0.06520], recall=[0.65811, 0.65811], precision=[0.06581, 0.06581], hit=[0.65811, 0.65811], ndcg=[0.38368, 0.38368]
INFO:root:Epoch 1259 [33.5s + 33.8s]: train==[540.72998=540.66370 + 0.06629], recall=[0.65993, 0.65993], precision=[0.06599, 0.06599], hit=[0.65993, 0.65993], ndcg=[0.38261, 0.38261]
INFO:root:Epoch 1269 [34.5s + 32.9s]: train==[538.56982=538.50256 + 0.06742], recall=[0.65497, 0.65497], precision=[0.06550, 0.06550], hit=[0.65497, 0.65497], ndcg=[0.37672, 0.37672]
INFO:root:Epoch 1279 [34.2s + 33.3s]: train==[536.25842=536.19031 + 0.06841], recall=[0.65795, 0.65795], precision=[0.06579, 0.06579], hit=[0.65795, 0.65795], ndcg=[0.38188, 0.38188]
INFO:root:Epoch 1289 [33.1s + 32.4s]: train==[533.37268=533.30304 + 0.06953], recall=[0.65844, 0.65844], precision=[0.06584, 0.06584], hit=[0.65844, 0.65844], ndcg=[0.38082, 0.38082]
INFO:root:Epoch 1299 [35.9s + 33.0s]: train==[532.15857=532.08820 + 0.07064], recall=[0.65894, 0.65894], precision=[0.06589, 0.06589], hit=[0.65894, 0.65894], ndcg=[0.38414, 0.38414]
INFO:root:Epoch 1309 [34.6s + 32.9s]: train==[529.70758=529.63580 + 0.07175], recall=[0.66043, 0.66043], precision=[0.06604, 0.06604], hit=[0.66043, 0.66043], ndcg=[0.38232, 0.38232]
INFO:root:Epoch 1319 [33.6s + 33.2s]: train==[527.28564=527.21234 + 0.07284], recall=[0.65695, 0.65695], precision=[0.06570, 0.06570], hit=[0.65695, 0.65695], ndcg=[0.38189, 0.38189]
INFO:root:Epoch 1329 [35.1s + 32.3s]: train==[526.17505=526.10065 + 0.07406], recall=[0.66225, 0.66225], precision=[0.06623, 0.06623], hit=[0.66225, 0.66225], ndcg=[0.38371, 0.38371]
INFO:root:Epoch 1339 [34.9s + 31.6s]: train==[523.93646=523.86163 + 0.07520], recall=[0.66109, 0.66109], precision=[0.06611, 0.06611], hit=[0.66109, 0.66109], ndcg=[0.38246, 0.38246]
INFO:root:Epoch 1349 [34.4s + 32.2s]: train==[522.75000=522.67334 + 0.07639], recall=[0.65745, 0.65745], precision=[0.06575, 0.06575], hit=[0.65745, 0.65745], ndcg=[0.38003, 0.38003]
INFO:root:Best Iter=[108]@[40683.3] recall=[0.66291], precision=[0.06629], hit=[0.66291], ndcg=[0.38266]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [109.4s + 31.3s]: train==[693.02966=693.01434 + 0.01583], recall=[0.21589, 0.21589], precision=[0.02159, 0.02159], hit=[0.21589, 0.21589], ndcg=[0.09896, 0.09896]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [109.3s + 28.8s]: train==[692.60126=692.58557 + 0.01582], recall=[0.23825, 0.23825], precision=[0.02382, 0.02382], hit=[0.23825, 0.23825], ndcg=[0.11065, 0.11065]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [108.5s + 28.7s]: train==[691.82983=691.81433 + 0.01581], recall=[0.28427, 0.28427], precision=[0.02843, 0.02843], hit=[0.28427, 0.28427], ndcg=[0.13612, 0.13612]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 39 [110.2s + 28.7s]: train==[690.79187=690.77600 + 0.01580], recall=[0.31954, 0.31954], precision=[0.03195, 0.03195], hit=[0.31954, 0.31954], ndcg=[0.16520, 0.16520]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 49 [109.9s + 29.8s]: train==[690.31891=690.30383 + 0.01579], recall=[0.34851, 0.34851], precision=[0.03485, 0.03485], hit=[0.34851, 0.34851], ndcg=[0.18844, 0.18844]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 59 [112.3s + 29.6s]: train==[690.17401=690.15912 + 0.01577], recall=[0.37053, 0.37053], precision=[0.03705, 0.03705], hit=[0.37053, 0.37053], ndcg=[0.20799, 0.20799]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 69 [108.3s + 30.9s]: train==[690.26617=690.24988 + 0.01576], recall=[0.38543, 0.38543], precision=[0.03854, 0.03854], hit=[0.38543, 0.38543], ndcg=[0.22021, 0.22021]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 79 [109.4s + 27.7s]: train==[690.34143=690.32556 + 0.01575], recall=[0.39785, 0.39785], precision=[0.03978, 0.03978], hit=[0.39785, 0.39785], ndcg=[0.22945, 0.22945]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 89 [109.2s + 30.1s]: train==[690.41339=690.39703 + 0.01574], recall=[0.40430, 0.40430], precision=[0.04043, 0.04043], hit=[0.40430, 0.40430], ndcg=[0.23493, 0.23493]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 99 [108.7s + 28.7s]: train==[690.47607=690.46069 + 0.01573], recall=[0.40132, 0.40132], precision=[0.04013, 0.04013], hit=[0.40132, 0.40132], ndcg=[0.23616, 0.23616]
INFO:root:Epoch 109 [108.7s + 30.9s]: train==[690.60730=690.59192 + 0.01572], recall=[0.39570, 0.39570], precision=[0.03957, 0.03957], hit=[0.39570, 0.39570], ndcg=[0.23217, 0.23217]
INFO:root:Epoch 119 [110.0s + 28.6s]: train==[690.69867=690.68335 + 0.01572], recall=[0.39040, 0.39040], precision=[0.03904, 0.03904], hit=[0.39040, 0.39040], ndcg=[0.23031, 0.23031]
INFO:root:Epoch 129 [111.0s + 29.2s]: train==[690.82721=690.81177 + 0.01572], recall=[0.38146, 0.38146], precision=[0.03815, 0.03815], hit=[0.38146, 0.38146], ndcg=[0.22265, 0.22265]
INFO:root:Epoch 139 [110.7s + 29.4s]: train==[690.95593=690.94110 + 0.01571], recall=[0.37301, 0.37301], precision=[0.03730, 0.03730], hit=[0.37301, 0.37301], ndcg=[0.21818, 0.21818]
INFO:root:Epoch 149 [109.9s + 28.3s]: train==[691.05719=691.04126 + 0.01571], recall=[0.36556, 0.36556], precision=[0.03656, 0.03656], hit=[0.36556, 0.36556], ndcg=[0.21101, 0.21101]
INFO:root:Epoch 159 [110.7s + 27.6s]: train==[691.15338=691.13721 + 0.01571], recall=[0.35861, 0.35861], precision=[0.03586, 0.03586], hit=[0.35861, 0.35861], ndcg=[0.20787, 0.20787]
INFO:root:Epoch 169 [109.5s + 29.6s]: train==[691.23975=691.22522 + 0.01572], recall=[0.34272, 0.34272], precision=[0.03427, 0.03427], hit=[0.34272, 0.34272], ndcg=[0.19732, 0.19732]
INFO:root:Epoch 179 [109.2s + 30.7s]: train==[691.26611=691.25006 + 0.01572], recall=[0.33957, 0.33957], precision=[0.03396, 0.03396], hit=[0.33957, 0.33957], ndcg=[0.19438, 0.19438]
INFO:root:Epoch 189 [109.9s + 28.9s]: train==[691.32001=691.30377 + 0.01572], recall=[0.33344, 0.33344], precision=[0.03334, 0.03334], hit=[0.33344, 0.33344], ndcg=[0.18869, 0.18869]
INFO:root:Epoch 199 [109.5s + 29.5s]: train==[691.40356=691.38800 + 0.01573], recall=[0.33377, 0.33377], precision=[0.03338, 0.03338], hit=[0.33377, 0.33377], ndcg=[0.18825, 0.18825]
INFO:root:Epoch 209 [110.5s + 28.8s]: train==[691.41046=691.39526 + 0.01574], recall=[0.32732, 0.32732], precision=[0.03273, 0.03273], hit=[0.32732, 0.32732], ndcg=[0.18623, 0.18623]
INFO:root:Epoch 219 [110.2s + 29.3s]: train==[691.35620=691.34076 + 0.01574], recall=[0.32219, 0.32219], precision=[0.03222, 0.03222], hit=[0.32219, 0.32219], ndcg=[0.18242, 0.18242]
INFO:root:Epoch 229 [109.0s + 29.3s]: train==[691.35846=691.34277 + 0.01575], recall=[0.32798, 0.32798], precision=[0.03280, 0.03280], hit=[0.32798, 0.32798], ndcg=[0.18444, 0.18444]
INFO:root:Epoch 239 [109.1s + 28.0s]: train==[691.34204=691.32605 + 0.01576], recall=[0.33013, 0.33013], precision=[0.03301, 0.03301], hit=[0.33013, 0.33013], ndcg=[0.18571, 0.18571]
INFO:root:Epoch 249 [110.9s + 29.2s]: train==[691.21832=691.20221 + 0.01578], recall=[0.32599, 0.32599], precision=[0.03260, 0.03260], hit=[0.32599, 0.32599], ndcg=[0.18384, 0.18384]
INFO:root:Epoch 259 [109.7s + 29.0s]: train==[691.22784=691.21216 + 0.01579], recall=[0.33146, 0.33146], precision=[0.03315, 0.03315], hit=[0.33146, 0.33146], ndcg=[0.18674, 0.18674]
INFO:root:Epoch 269 [110.1s + 30.8s]: train==[691.04492=691.02838 + 0.01581], recall=[0.33775, 0.33775], precision=[0.03377, 0.03377], hit=[0.33775, 0.33775], ndcg=[0.18798, 0.18798]
INFO:root:Epoch 279 [109.4s + 29.8s]: train==[691.04309=691.02734 + 0.01583], recall=[0.33907, 0.33907], precision=[0.03391, 0.03391], hit=[0.33907, 0.33907], ndcg=[0.19225, 0.19225]
INFO:root:Epoch 289 [109.2s + 28.8s]: train==[690.93469=690.91937 + 0.01586], recall=[0.34205, 0.34205], precision=[0.03421, 0.03421], hit=[0.34205, 0.34205], ndcg=[0.19495, 0.19495]
INFO:root:Best Iter=[8]@[30974.2] recall=[0.40430], precision=[0.04043], hit=[0.40430], ndcg=[0.23493]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [108.1s + 31.3s]: train==[692.90387=692.88800 + 0.01583], recall=[0.21656, 0.21656], precision=[0.02166, 0.02166], hit=[0.21656, 0.21656], ndcg=[0.09676, 0.09676]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [107.6s + 31.4s]: train==[692.17023=692.15454 + 0.01582], recall=[0.24454, 0.24454], precision=[0.02445, 0.02445], hit=[0.24454, 0.24454], ndcg=[0.11712, 0.11712]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [108.5s + 31.0s]: train==[690.45520=690.44019 + 0.01581], recall=[0.29570, 0.29570], precision=[0.02957, 0.02957], hit=[0.29570, 0.29570], ndcg=[0.14817, 0.14817]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 39 [109.7s + 30.5s]: train==[688.80579=688.78986 + 0.01580], recall=[0.35215, 0.35215], precision=[0.03522, 0.03522], hit=[0.35215, 0.35215], ndcg=[0.18496, 0.18496]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 49 [107.4s + 32.3s]: train==[688.51703=688.50220 + 0.01579], recall=[0.38825, 0.38825], precision=[0.03882, 0.03882], hit=[0.38825, 0.38825], ndcg=[0.21333, 0.21333]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 59 [107.8s + 30.2s]: train==[688.87195=688.85651 + 0.01577], recall=[0.40563, 0.40563], precision=[0.04056, 0.04056], hit=[0.40563, 0.40563], ndcg=[0.22945, 0.22945]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 69 [108.4s + 31.4s]: train==[689.21625=689.20105 + 0.01575], recall=[0.42351, 0.42351], precision=[0.04235, 0.04235], hit=[0.42351, 0.42351], ndcg=[0.24481, 0.24481]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 79 [108.0s + 31.4s]: train==[689.56714=689.55115 + 0.01573], recall=[0.42550, 0.42550], precision=[0.04255, 0.04255], hit=[0.42550, 0.42550], ndcg=[0.25040, 0.25040]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 89 [107.7s + 31.7s]: train==[689.91840=689.90308 + 0.01572], recall=[0.41573, 0.41573], precision=[0.04157, 0.04157], hit=[0.41573, 0.41573], ndcg=[0.24656, 0.24656]
INFO:root:Epoch 99 [107.3s + 31.8s]: train==[690.30859=690.29266 + 0.01571], recall=[0.40099, 0.40099], precision=[0.04010, 0.04010], hit=[0.40099, 0.40099], ndcg=[0.24021, 0.24021]
INFO:root:Epoch 109 [109.0s + 30.2s]: train==[690.64331=690.62799 + 0.01570], recall=[0.38096, 0.38096], precision=[0.03810, 0.03810], hit=[0.38096, 0.38096], ndcg=[0.22744, 0.22744]
INFO:root:Epoch 119 [108.3s + 30.9s]: train==[690.93121=690.91602 + 0.01569], recall=[0.36656, 0.36656], precision=[0.03666, 0.03666], hit=[0.36656, 0.36656], ndcg=[0.21832, 0.21832]
INFO:root:Epoch 129 [108.7s + 30.7s]: train==[691.19171=691.17572 + 0.01569], recall=[0.35017, 0.35017], precision=[0.03502, 0.03502], hit=[0.35017, 0.35017], ndcg=[0.20501, 0.20501]
INFO:root:Epoch 139 [108.4s + 31.3s]: train==[691.41083=691.39520 + 0.01569], recall=[0.33560, 0.33560], precision=[0.03356, 0.03356], hit=[0.33560, 0.33560], ndcg=[0.19360, 0.19360]
INFO:root:Epoch 149 [108.9s + 32.2s]: train==[691.54047=691.52478 + 0.01568], recall=[0.32583, 0.32583], precision=[0.03258, 0.03258], hit=[0.32583, 0.32583], ndcg=[0.18488, 0.18488]
INFO:root:Epoch 159 [107.7s + 31.4s]: train==[691.68024=691.66479 + 0.01568], recall=[0.31573, 0.31573], precision=[0.03157, 0.03157], hit=[0.31573, 0.31573], ndcg=[0.17791, 0.17791]
INFO:root:Epoch 169 [107.9s + 30.9s]: train==[691.77216=691.75684 + 0.01568], recall=[0.30348, 0.30348], precision=[0.03035, 0.03035], hit=[0.30348, 0.30348], ndcg=[0.16998, 0.16998]
INFO:root:Epoch 179 [107.8s + 31.5s]: train==[691.88464=691.86926 + 0.01568], recall=[0.29917, 0.29917], precision=[0.02992, 0.02992], hit=[0.29917, 0.29917], ndcg=[0.16611, 0.16611]
INFO:root:Epoch 189 [108.3s + 31.3s]: train==[691.93323=691.91705 + 0.01569], recall=[0.29354, 0.29354], precision=[0.02935, 0.02935], hit=[0.29354, 0.29354], ndcg=[0.16050, 0.16050]
INFO:root:Epoch 199 [108.1s + 30.6s]: train==[691.95490=691.93878 + 0.01569], recall=[0.29238, 0.29238], precision=[0.02924, 0.02924], hit=[0.29238, 0.29238], ndcg=[0.15807, 0.15807]
INFO:root:Epoch 209 [109.1s + 29.7s]: train==[691.96130=691.94519 + 0.01570], recall=[0.28841, 0.28841], precision=[0.02884, 0.02884], hit=[0.28841, 0.28841], ndcg=[0.15508, 0.15508]
INFO:root:Epoch 219 [108.1s + 31.1s]: train==[691.99677=691.98145 + 0.01571], recall=[0.28775, 0.28775], precision=[0.02877, 0.02877], hit=[0.28775, 0.28775], ndcg=[0.15599, 0.15599]
INFO:root:Epoch 229 [108.3s + 31.4s]: train==[691.94861=691.93237 + 0.01572], recall=[0.28891, 0.28891], precision=[0.02889, 0.02889], hit=[0.28891, 0.28891], ndcg=[0.15496, 0.15496]
INFO:root:Epoch 239 [107.8s + 33.0s]: train==[691.90302=691.88763 + 0.01573], recall=[0.29321, 0.29321], precision=[0.02932, 0.02932], hit=[0.29321, 0.29321], ndcg=[0.15813, 0.15813]
INFO:root:Epoch 249 [108.4s + 30.1s]: train==[691.88428=691.86914 + 0.01575], recall=[0.29967, 0.29967], precision=[0.02997, 0.02997], hit=[0.29967, 0.29967], ndcg=[0.16089, 0.16089]
INFO:root:Epoch 259 [108.0s + 32.1s]: train==[691.78033=691.76495 + 0.01577], recall=[0.31043, 0.31043], precision=[0.03104, 0.03104], hit=[0.31043, 0.31043], ndcg=[0.16664, 0.16664]
INFO:root:Epoch 269 [107.9s + 31.0s]: train==[691.67322=691.65717 + 0.01579], recall=[0.31838, 0.31838], precision=[0.03184, 0.03184], hit=[0.31838, 0.31838], ndcg=[0.17349, 0.17349]
INFO:root:Epoch 279 [109.1s + 30.6s]: train==[691.58917=691.57281 + 0.01581], recall=[0.33030, 0.33030], precision=[0.03303, 0.03303], hit=[0.33030, 0.33030], ndcg=[0.18239, 0.18239]
INFO:root:Best Iter=[7]@[29555.0] recall=[0.42550], precision=[0.04255], hit=[0.42550], ndcg=[0.25040]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=2, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=3, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 9 [30.9s + 28.4s]: train==[693.02240=693.00720 + 0.01583], recall=[0.20662, 0.20662], precision=[0.02066, 0.02066], hit=[0.20662, 0.20662], ndcg=[0.09224, 0.09224]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 19 [31.5s + 28.0s]: train==[692.75433=692.73853 + 0.01582], recall=[0.21126, 0.21126], precision=[0.02113, 0.02113], hit=[0.21126, 0.21126], ndcg=[0.09668, 0.09668]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 29 [29.6s + 27.9s]: train==[692.12799=692.11353 + 0.01580], recall=[0.24007, 0.24007], precision=[0.02401, 0.02401], hit=[0.24007, 0.24007], ndcg=[0.11160, 0.11160]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 39 [31.1s + 32.5s]: train==[691.56879=691.55206 + 0.01579], recall=[0.26755, 0.26755], precision=[0.02675, 0.02675], hit=[0.26755, 0.26755], ndcg=[0.13099, 0.13099]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 49 [31.0s + 29.8s]: train==[691.55157=691.53674 + 0.01577], recall=[0.29570, 0.29570], precision=[0.02957, 0.02957], hit=[0.29570, 0.29570], ndcg=[0.14944, 0.14944]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 59 [31.3s + 29.4s]: train==[691.70563=691.68951 + 0.01575], recall=[0.30944, 0.30944], precision=[0.03094, 0.03094], hit=[0.30944, 0.30944], ndcg=[0.16051, 0.16051]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 69 [30.0s + 30.2s]: train==[691.83575=691.82056 + 0.01573], recall=[0.31291, 0.31291], precision=[0.03129, 0.03129], hit=[0.31291, 0.31291], ndcg=[0.16393, 0.16393]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 79 [30.9s + 29.7s]: train==[691.95612=691.93933 + 0.01571], recall=[0.31523, 0.31523], precision=[0.03152, 0.03152], hit=[0.31523, 0.31523], ndcg=[0.16500, 0.16500]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 89 [31.1s + 29.9s]: train==[692.04022=692.02448 + 0.01570], recall=[0.30679, 0.30679], precision=[0.03068, 0.03068], hit=[0.30679, 0.30679], ndcg=[0.16065, 0.16065]
INFO:root:Epoch 99 [32.0s + 28.3s]: train==[692.15509=692.13940 + 0.01569], recall=[0.29818, 0.29818], precision=[0.02982, 0.02982], hit=[0.29818, 0.29818], ndcg=[0.15653, 0.15653]
INFO:root:Epoch 109 [32.2s + 29.9s]: train==[692.22345=692.20770 + 0.01568], recall=[0.29139, 0.29139], precision=[0.02914, 0.02914], hit=[0.29139, 0.29139], ndcg=[0.15275, 0.15275]
INFO:root:Epoch 119 [30.7s + 29.7s]: train==[692.32037=692.30469 + 0.01567], recall=[0.28924, 0.28924], precision=[0.02892, 0.02892], hit=[0.28924, 0.28924], ndcg=[0.14806, 0.14806]
INFO:root:Epoch 129 [30.9s + 30.5s]: train==[692.37439=692.35840 + 0.01567], recall=[0.28642, 0.28642], precision=[0.02864, 0.02864], hit=[0.28642, 0.28642], ndcg=[0.14641, 0.14641]
INFO:root:Namespace(Ks='[10]', batch_size=64, data_path='./data/recommendation/', dataset='ml-1m', embed_size=128, epoch=2000, gpu=3, item_density_threshold=0.01, item_threshold=30, layer_size=[128], lmbda=1, local_batch_size=512, local_epoch=1, log_name='run4_1', log_path='/home/qhuaf/graph_pri/logs/', lr=0.0001, mess_dropout=[0.1, 0.1, 0.1], model_name='two_side_graph_run4_1.pkl', num_neighbor=10, num_process=4, pretrain_epoch=300, pri_epoch=200, privacy_protect=False, regs=[1e-05], report=0, save_flag=1, test_flag='part', user_batch_size=512, verbose=1, weights_path='model/')
INFO:root:Epoch 139 [31.0s + 29.8s]: train==[692.44653=692.43091 + 0.01566], recall=[0.27268, 0.27268], precision=[0.02727, 0.02727], hit=[0.27268, 0.27268], ndcg=[0.13988, 0.13988]
INFO:root:Epoch 149 [34.6s + 34.8s]: train==[692.42352=692.40759 + 0.01566], recall=[0.27566, 0.27566], precision=[0.02757, 0.02757], hit=[0.27566, 0.27566], ndcg=[0.13919, 0.13919]
INFO:root:Epoch 159 [34.4s + 33.2s]: train==[692.45435=692.43835 + 0.01566], recall=[0.27119, 0.27119], precision=[0.02712, 0.02712], hit=[0.27119, 0.27119], ndcg=[0.13488, 0.13488]
INFO:root:Epoch 169 [34.7s + 34.4s]: train==[692.47711=692.46161 + 0.01566], recall=[0.27020, 0.27020], precision=[0.02702, 0.02702], hit=[0.27020, 0.27020], ndcg=[0.13569, 0.13569]
INFO:root:Epoch 9 [111.7s + 31.8s]: train==[692.91852=692.90277 + 0.01583], recall=[0.19834, 0.19834], precision=[0.01983, 0.01983], hit=[0.19834, 0.19834], ndcg=[0.09201, 0.09201]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 179 [35.0s + 32.9s]: train==[692.46967=692.45416 + 0.01566], recall=[0.26738, 0.26738], precision=[0.02674, 0.02674], hit=[0.26738, 0.26738], ndcg=[0.13409, 0.13409]
INFO:root:Epoch 189 [32.9s + 33.2s]: train==[692.44141=692.42615 + 0.01566], recall=[0.27136, 0.27136], precision=[0.02714, 0.02714], hit=[0.27136, 0.27136], ndcg=[0.13791, 0.13791]
INFO:root:Epoch 199 [32.2s + 32.2s]: train==[692.40662=692.39069 + 0.01566], recall=[0.27599, 0.27599], precision=[0.02760, 0.02760], hit=[0.27599, 0.27599], ndcg=[0.13932, 0.13932]
INFO:root:Epoch 209 [33.0s + 33.4s]: train==[692.33411=692.31860 + 0.01567], recall=[0.27483, 0.27483], precision=[0.02748, 0.02748], hit=[0.27483, 0.27483], ndcg=[0.14033, 0.14033]
INFO:root:Epoch 19 [111.9s + 33.2s]: train==[692.41840=692.40161 + 0.01582], recall=[0.21937, 0.21937], precision=[0.02194, 0.02194], hit=[0.21937, 0.21937], ndcg=[0.10200, 0.10200]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 219 [32.4s + 32.7s]: train==[692.24310=692.22809 + 0.01567], recall=[0.28444, 0.28444], precision=[0.02844, 0.02844], hit=[0.28444, 0.28444], ndcg=[0.14542, 0.14542]
INFO:root:Epoch 229 [33.4s + 33.4s]: train==[692.23419=692.21790 + 0.01568], recall=[0.29255, 0.29255], precision=[0.02925, 0.02925], hit=[0.29255, 0.29255], ndcg=[0.15190, 0.15190]
INFO:root:Epoch 239 [34.2s + 33.1s]: train==[692.07355=692.05865 + 0.01570], recall=[0.29917, 0.29917], precision=[0.02992, 0.02992], hit=[0.29917, 0.29917], ndcg=[0.15765, 0.15765]
INFO:root:Epoch 29 [111.8s + 33.1s]: train==[691.42291=691.40704 + 0.01581], recall=[0.26209, 0.26209], precision=[0.02621, 0.02621], hit=[0.26209, 0.26209], ndcg=[0.12517, 0.12517]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl
INFO:root:Epoch 249 [33.5s + 32.6s]: train==[691.96063=691.94550 + 0.01571], recall=[0.30745, 0.30745], precision=[0.03075, 0.03075], hit=[0.30745, 0.30745], ndcg=[0.16308, 0.16308]
INFO:root:Epoch 259 [32.9s + 33.1s]: train==[691.81903=691.80286 + 0.01572], recall=[0.32815, 0.32815], precision=[0.03281, 0.03281], hit=[0.32815, 0.32815], ndcg=[0.17618, 0.17618]
INFO:root:save the weights in path: model/two_side_graph_run4_1.pkl