-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasts.R
857 lines (729 loc) · 36.7 KB
/
asts.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#######################################################################
##'# R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
# Platform: x86_64-w64-mingw32/x64 (64-bit)
##'
##'This code aims to provide the source code for a spatiotemporal adaptive sampling algorithm model.
##'The model is applicable to research aimed at minimizing long-term cumulative prediction errors.
##'The minimum requirements for model construction are: projection coordinates utmX, utmY (used for building the inla-spde mesh) and the target variable.
##'If there are covariates involved in the model building, they can also be applied (just modify the expression as needed).
##'
##'This software package is compiled and executed in a Windows environment.
##'The Mac environment requires independent configuration of packages such as INLA and GA.
##'The INLA package and related papers referenced for use are as follows.'https://www.r-inla.org/what-is-inla
##'
##' Copyright (C) China University of Geosciences (Wuhan) High-Performance Spatial Computational Intelligence Lab
##' @author JunfengGu v1.0
#######################################################################
############# cube1 load library
#######################################################################
library(ggplot2)
library(tidyr)
library(dplyr)
library(INLA)
library(geosample)
library(magrittr)
library(purrr)
#######################################################################
############# cube2 load data
#######################################################################
load("origin.data.rdata")
head(data.border)
# UTM_X UTM_Y
# 1 839.406 3434.387
# 2 841.059 3320.620
# 3 837.062 3445.284
# 4 838.012 3339.756
# 5 881.109 3430.434
# 6 802.687 3435.190
head(data.coordinates.utm)
# Station_ID UTM_X UTM_Y
# 1 1 808.460 3469.927
# 2 2 812.737 3470.054
# 3 3 808.585 3465.670
# 4 4 812.863 3465.797
# 5 5 817.142 3465.925
# 6 6 821.420 3466.056
head(data.coordinates.sf)
# Station_ID geometry
# 1 1 POINT (808.46 3469.927)
# 2 2 POINT (812.737 3470.054)
# 3 3 POINT (808.585 3465.67)
# 4 4 POINT (812.863 3465.797)
# 5 5 POINT (817.142 3465.925)
# 6 6 POINT (821.42 3466.056)
head(data.pm.2017)
head(data.pm.all)
# Station_ID Lon Lat UTM_X UTM_Y month PM2017 PM2018 PM2019 PM2020 PM2021
# 1 1 114.2413 31.3229 808.46 3469.927 1 78.4 75.6 86.2 58.4 60.3
# 2 1 114.2413 31.3229 808.46 3469.927 2 62.9 63.2 67.3 39.2 44.6
# 3 1 114.2413 31.3229 808.46 3469.927 3 56.2 45.6 43.3 35.6 36.3
# 4 1 114.2413 31.3229 808.46 3469.927 4 39.9 39.8 34.7 32.8 30.4
# 5 1 114.2413 31.3229 808.46 3469.927 5 40.1 33.1 30.9 28.4 26.8
#######################################################################
############# cube3 parameter combination
#######################################################################
#'The settings of the parameters influence the computational efficiency of the model and the final sampling results.
#'The representations of each parameter are as follows:
#' ini_sample_num:
#' The initial sampling quantity serves as prior information for initializing the overall sampling scheme.
#' The initial sampling quantity influences the final sampling results and should be adjusted based on the target number of samples.
#' For example, if the ultimate goal is to have 10 sampling points, setting the initial points to 5 or 6 is more appropriate.
#' While 3 or 4 sampling points can still allow the model to function properly, the lack of sufficient prior information may lead to biased results.
#' However, this is not a significant issue, as the model's use of multiple parameters will eventually yield optimal results, which can help address some of these concerns from certain perspectives.
#'ini_sample_border_dis: Initialize the distance between sampling points and boundaries to avoid the influence of INLA-SPDE boundary effects on prior information.
#'ini_sample_dis:ini_sample_border_dis: Initializes the minimum distance between sampling points.
#' This parameter allows the initial model to incorporate better prior information, preventing the sampling set from being overly dense.
#'
#'NOTE:
#'(ini_sample_num,ini_sample_border_dis,ini_sample_dis)
#'These three parameters are necessary for the initial sampling process and mainly influence the prior information.
#' Better prior information will inevitably yield a superior initial plan.
#' The greater the difference between the initial sampling points and the target sampling points, the less impact the initial sampling points will have on the final sampling scheme.
#' Additionally, adjustments can be made based on the research objectives.
#'
#'
#' The prior.range_max and alpha parameters are used to construct the spde component in INLA-SPDE.
#' INLA-SPDE create an inla.spde2 model object for a Matern model, using a PC prior for the parameters.
#' prior.range_max : the max of spatial range of the random field
#' alpha:Fractional operator order, 0<alpha≤2 supported, for v=alpha-d/2>0
#'
#' sampleDis:Minimum distance between two sampling points during the ASTS process.
#' borderDis:Minimum distance from sampling points to boundaries in ASTS
#'
#'
#' You may not know exactly how to set the parameters to achieve optimal results from the model.
#' Below is a method for establishing a set of parameters that can yield the best sampling scheme and optimal parameters.
#' However, it is important to note that this is just an example; specific boundary values need to be established based on the scale of the research.
ini_sample_num <- 5
target_samplesize <- 10
alpha_value <- c("1/2","1","3/2")
prior.range_max_value <- seq(10, 30, by = 5)
sampleDis_value <- seq(10, 20, by = 2)
borderDis_value <- seq(10,15,by=3)
#NOte!!! :Too many combinations mean it will be more time-consuming.
para.combinations <- expand.grid(alpha = alpha_value,
prior.range_max = prior.range_max_value,
sampleDis = sampleDis_value,
borderDis=borderDis_value)
#######################################################################
############# cube4 define formular
#######################################################################
##'This is only part of the formula, focusing on the predictive variables and covariates.
##'During the modeling process, it is also necessary to incorporate spatiotemporal features.
##'The complete formula will require the addition of space-related SPDEs and time-related models.
##'Since the SPDE is continuously updated during the sampling process, it is defined within the sampling function.
f <- logPM ~ -1 + Intercept + UTM_X + UTM_Y
#######################################################################
############# cube5 load ASTS
#######################################################################
n_stations <- length(data.coordinates.utm$Station_ID)
n_data <- length(data.pm.2017$Station_ID)
n_time <- as.integer(n_data/n_stations)
list_stationID <- list(data.coordinates.utm$Station_ID)
#Each parameter's sampling scheme under different iteration requirements is directly stored in a TXT file.
# For example, if the target sample size is 10 and there are 5 parameter sets, with each set having 5 iterations, then the file name could be sample10_3.5.
# Here, 10_3 indicates the third parameter space, while 5 denotes the fifth iterations within that space.
filename <-"sample10_"
# The variable 'outpath' represents the folder where all the txt files from this experiment are stored.
outpath <- "txtOut/sample10"
# Start the timer
start_time <- Sys.time()
# Execute the main function with specified parameters
asts_start(para.combinations, iterations = 5)
# Capture the end time right after the function execution
end_time <- Sys.time()
# Calculate the elapsed execution time
execution_time <- end_time - start_time
# Print the execution time in a readable format
cat("Execution Time:", execution_time, "\n")
#######################################################################
############# cube6 Extract the optimal solution
#######################################################################
# Extracting the optimal results requires only the input of the results folder, regardless of how many txt files are within it;
# the system will automatically find the best solution.
extract_result("txtOut/sample10")
# The function returns content as follows:
# File with minimum RMSE: txtOut/sample10/sample10_1.2.txt
# RMSE = 0.2212
# R² = 0.7302
# MAE = 0.149
# MSE = 0.0489
# SampleSize = 10
# SampleIDs = SampleID1=31, SampleID2=136, SampleID3=182, SampleID4=192, SampleID5=299, SampleID6=440, SampleID7=437, SampleID8=398, SampleID9=2, SampleID10=386
# In addition to finding the optimal sampling scheme,
# sample10_1.2 represents the parameter set where the best results are located, which is the first group.
################################################################################
############# function collection ##############################
################################################################################
#' @author JunFengGu
#' @description asts function collection
#' @v1.0
# Function: mse
# Description: Calculates the Mean Squared Error (MSE) between actual and predicted numeric vectors.
#
# Parameters:
# - actual: Numeric vector. The actual observed values.
# - predicted: Numeric vector. The predicted values corresponding to the actual values.
#
# Returns: Numeric. The MSE value calculated as the mean of squared differences between actual and predicted values.
mse <- function(actual, predicted) {
tryCatch({
if (!is.numeric(actual) || !is.numeric(predicted)) {
stop("Error: Both 'actual' and 'predicted' must be numeric vectors.")
}
if (length(actual) == 0 || length(predicted) == 0) {
stop("Error: Both 'actual' and 'predicted' cannot be empty.")
}
if (length(actual) != length(predicted)) {
stop("Error: Vectors 'actual' and 'predicted' must be of the same length.")
}
cat("Calculating MSE for provided actual and predicted vectors.\n")
mse_value <- mean((actual - predicted)^2)
cat("MSE calculated successfully.\n")
return(mse_value)
}, error = function(e) {
cat("An error occurred in MSE calculation: ", e$message, "\n")
return(NA)
})
}
# Function: mae
# Description: Calculates the Mean Absolute Error (MAE) between actual and predicted numeric vectors.
#
# Parameters:
# - actual: Numeric vector. The actual observed values.
# - predicted: Numeric vector. The predicted values corresponding to the actual values.
#
# Returns: Numeric. The MAE value calculated as the mean of absolute differences between actual and predicted values.
mae <- function(actual, predicted) {
tryCatch({
if (!is.numeric(actual) || !is.numeric(predicted)) {
stop("Error: Both 'actual' and 'predicted' must be numeric vectors.")
}
if (length(actual) == 0 || length(predicted) == 0) {
stop("Error: Both 'actual' and 'predicted' cannot be empty.")
}
if (length(actual) != length(predicted)) {
stop("Error: Vectors 'actual' and 'predicted' must be of the same length.")
}
cat("Calculating MAE for provided actual and predicted vectors.\n")
mae_value <- mean(abs(actual - predicted))
cat("MAE calculated successfully.\n")
return(mae_value)
}, error = function(e) {
cat("An error occurred in MAE calculation: ", e$message, "\n")
return(NA)
})
}
# Function: calculate_r2_score
# Description: Computes the R² (coefficient of determination) score for actual and predicted values.
#
# Parameters:
# - y_actual: Numeric vector. The actual observed values.
# - y_predicted: Numeric vector. The predicted values corresponding to the actual values.
#
# Returns: Numeric. The R² score indicating the proportion of variance in the dependent variable explained by the independent variable(s).
calculate_r2_score <- function(y_actual, y_predicted) {
tryCatch({
if (!is.numeric(y_actual) || !is.numeric(y_predicted)) {
stop("Error: Both 'y_actual' and 'y_predicted' must be numeric vectors.")
}
if (length(y_actual) == 0 || length(y_predicted) == 0) {
stop("Error: Both 'y_actual' and 'y_predicted' cannot be empty.")
}
if (length(y_actual) != length(y_predicted)) {
stop("Error: Vectors 'y_actual' and 'y_predicted' must be of the same length.")
}
avr_y_actual <- mean(y_actual)
ss_total <- sum((y_actual - avr_y_actual)^2)
ss_residuals <- sum((y_actual - y_predicted)^2)
if (ss_total == 0) {
stop("Total sum of squares is zero; cannot calculate R².")
}
cat("Calculating R² score for provided actual and predicted values.\n")
r2 <- 1 - ss_residuals / ss_total
cat("R² calculated successfully.\n")
return(r2)
}, error = function(e) {
cat("An error occurred in R² calculation: ", e$message, "\n")
return(NA)
})
}
# Function: cal_dis
# Description: Calculates the Euclidean distance between two points in 2D space.
#
# Parameters:
# - x1, y1: Numeric. The coordinates of the first point.
# - x2, y2: Numeric. The coordinates of the second point.
#
# Returns: Numeric. The Euclidean distance between the two points.
cal_dis <- function(x1, y1, x2, y2) {
tryCatch({
if (!is.numeric(x1) || !is.numeric(y1) || !is.numeric(x2) || !is.numeric(y2)) {
stop("Error: All inputs to the distance function must be numeric.")
}
if (length(x1) != 1 || length(y1) != 1 || length(x2) != 1 || length(y2) != 1) {
stop("Error: All inputs must be scalars (single numeric values).")
}
cat("Calculating Euclidean distance between points.\n")
distance <- sqrt((x2 - x1)^2 + (y2 - y1)^2)
cat("Distance calculated successfully.\n")
return(distance)
}, error = function(e) {
cat("An error occurred in distance calculation: ", e$message, "\n")
return(NA)
})
}
# Function: calculate_validation_metrics
# Description: Computes various validation metrics for model performance based on predictions from an INLA model.
#
# Parameters:
# - stack: Object. The INLA stack object containing prediction data.
# - result.1: Object. The result object from an INLA model fit, containing predictive results.
# - val.data: Data frame. Contains validation data, including actual observations to compare against.
#
# Returns: List. A named list of validation metrics including DIC, RMSE, MAE, MSE, R², coverage probability, and residuals.
calculate_validation_metrics <- function(stack, result.1, val.data) {
tryCatch({
validation.res <- list()
index_val <- inla.stack.index(stack, "val")$data
tmp_val.mean <- result.1$summary.linear.predictor[index_val, "mean"]
tmp_val.sd <- result.1$summary.linear.predictor[index_val, "sd"]
val.data$pm_val <- tmp_val.mean
val.data$res <- abs(val.data$logPM - tmp_val.mean)
validation.res$res.std <- (val.data$logPM - tmp_val.mean) / sqrt(tmp_val.sd^2 + 1/result.1$summary.hyperpar[1, "mean"])
validation.res$p <- pnorm(validation.res$res.std)
validation.res$cover <- mean((validation.res$p > 0.025) & (validation.res$p < 0.975), na.rm = TRUE)
validation.res$dic <- result.1[["dic"]][["dic"]]
validation.res$rmse <- sqrt(mean(val.data$res^2, na.rm = TRUE))
validation.res$mae <- mae(val.data$logPM, val.data$pm_val)
validation.res$mse <- mse(val.data$logPM, val.data$pm_val)
validation.res$r2 <- calculate_r2_score(val.data$logPM, val.data$pm_val)
validation.res$GroupRho <- result.1$summary.hyperpar["GroupRho for field", ][[1]]
validation.res$cor <- cor(val.data$logPM, val.data$pm_val, use = "pairwise.complete.obs", method = "pearson")
validation.res$val.data <- val.data
cat("Validation metrics calculated successfully.\n")
return(validation.res)
}, error = function(e) {
cat("An error occurred in calculate_validation_metrics: ", e$message, "\n")
return(NULL)
})
}
# Function: analyze_inhibit_sample
# Description: This function attempts to generate an inhibitory sample of spatial points
# within a given border, ensuring that the generated points are at least a specified
# minimum distance from the border. It uses a discrete inhibition sampling method.
#
# Parameters:
# - data_border: Data frame. Contains the spatial coordinates (UTM_X, UTM_Y) defining the border.
# - data_utm: Data frame. Contains the spatial coordinates (UTM_X, UTM_Y) of the points to sample from.
# - ini_sampleNUM: Numeric. The initial number of samples to attempt to generate.
# - del: Numeric. The inhibition distance parameter used in the sampling process.
# - dis: Numeric. The minimum distance required between generated samples and the border.
#
# Returns:
# - A vector of Station_IDs representing the successful inhibitory sample if generated,
# or NULL if the process fails after a specified number of attempts.
#
# Notes:
# - The function will attempt to generate a valid sample up to 'maxTryTimes' times.
# If unsuccessful, it suggests adjusting the 'dis' parameter.
# - The function includes input validation and error handling to ensure robustness.
analyze_inhibit_sample <- function(data_border, data_utm, ini_sampleNUM, del, dis) {
tryTimes <- 0
maxTryTimes <- 1000
tryCatch({
# Validate inputs
if (!is.data.frame(data_border) || !is.data.frame(data_utm)) {
stop("Error: 'data_border' and 'data_utm' must be data frames.")
}
if (!all(c('UTM_X', 'UTM_Y') %in% names(data_utm))) {
stop("Error: 'data_utm' must contain 'UTM_X' and 'UTM_Y' columns.")
}
if (!all(c('UTM_X', 'UTM_Y') %in% names(data_border))) {
stop("Error: 'data_border' must contain 'UTM_X' and 'UTM_Y' columns.")
}
if (!is.numeric(ini_sampleNUM) || ini_sampleNUM <= 0) {
stop("Error: 'ini_sampleNUM' must be a positive number.")
}
if (!is.numeric(del) || del <= 0) {
stop("Error: 'del' must be a positive number.")
}
if (!is.numeric(dis) || dis <= 0) {
stop("Error: 'dis' must be a positive number.")
}
# Convert data_utm to sf object
data_sf <- st_as_sf(data_utm, coords = c('UTM_X', 'UTM_Y'))
# Check if data_sf is an sf object
if (!inherits(data_sf, "sf")) {
stop("Error: data_sf must be of class 'sf'.")
}
while (tryTimes < maxTryTimes) {
# Increment tryTimes
tryTimes <- tryTimes + 1
cat("Attempting to generate inhibit sample, try #", tryTimes, "\n")
# Attempt to generate inhibit sample
inhibit_sample <- discrete.inhibit.sample(obj = data_sf, size = ini_sampleNUM, delta = del, plotit = FALSE)
# Check if inhibit_sample is valid
if (is.null(inhibit_sample) || length(inhibit_sample[[4]]) == 0) {
cat("Warning: Inhibit sample generation failed, retrying...\n")
next
}
inhibit_sample_selected_data <- data_utm[data_utm$Station_ID %in% inhibit_sample[[4]][[1]], ]
# Calculate minimum distances
min_distances <- sapply(1:nrow(inhibit_sample_selected_data), function(i) {
point <- inhibit_sample_selected_data[i, ]
distances <- sqrt((data_border$UTM_X - point$UTM_X)^2 + (data_border$UTM_Y - point$UTM_Y)^2)
min(distances)
})
# Check distances
check_distances <- function(min_distances) {
if (any(min_distances < dis)) {
return(FALSE)
} else {
return(TRUE)
}
}
result <- check_distances(min_distances)
if (result) {
cat("Inhibit sample generation successful.\n")
plot(data_border)
points(st_coordinates(inhibit_sample[[4]])[,1], st_coordinates(inhibit_sample[[4]])[,2], col = "blue", pch = 19)
return(inhibit_sample[[4]][[1]])
} else {
cat("Minimum distance requirement not met, retrying...\n")
}
}
stop("\nReached maximum tryTimes. Please change 'dis'.")
}, error = function(e) {
cat("An error occurred in analyze_inhibit_sample: ", e$message, "\n")
return(NULL)
})
}
# Function: asts_function
# Description: The function processes geographic and environmental data, supporting iterative sample selection based on an adaptive spatiotemporal sampling strategy,
# where the integrated nested Laplace approximation (INLA) method is used to fit spatiotemporal models.
# Parameters:
# - txt_name: Character. The name of the text file where results will be written.
# - data.coordinates: Data frame. Contains the spatial coordinates (UTM_X, UTM_Y) of the stations.
# - data.pm: Data frame. Contains particulate matter measurements (PM) and other relevant data.
# - target_samplesize: Numeric. The target sample size for model estimation.
# - inhibit_samplesize: Numeric. The size of the inhibitory sample to be used initially.
# - alpha: Numeric. The range parameter for the SPDE model, controlling spatial smoothness.
# - prior.range_max: Numeric. The maximum prior range value for the SPDE model.
#
# Returns: NULL. The function primarily writes data to a specified text file.
# Each loop iteration prints messages to indicate progress and status of the process.
asts_function <- function(txt_name,
alpha,
prior.range_max) {
tryCatch({
# Validate inputs
if (!is.character(txt_name) || nchar(txt_name) == 0) {
stop("Error: 'txt_name' must be a non-empty string.")
}
if (!is.data.frame(data.coordinates) || !is.data.frame(data.pm)) {
stop("Error: 'data.coordinates' and 'data.pm' must be data frames.")
}
if (!all(c('UTM_X', 'UTM_Y', 'Station_ID') %in% names(data.coordinates))) {
stop("Error: 'data.coordinates' must contain 'UTM_X', 'UTM_Y' and 'Station_ID' columns.")
}
if (!all(c('PM', 'Station_ID') %in% names(data.pm))) {
stop("Error: 'data.pm' must contain 'PM' and 'Station_ID' columns.")
}
if (!is.numeric(target_samplesize) || target_samplesize <= 0) {
stop("Error: 'target_samplesize' must be a positive number.")
}
if (!is.numeric(inhibit_samplesize) || inhibit_samplesize <= 0) {
stop("Error: 'inhibit_samplesize' must be a positive number.")
}
if (!is.numeric(alpha) || alpha <= 0) {
stop("Error: 'alpha' must be a positive number.")
}
if (!is.numeric(prior.range_max) || prior.range_max <= 0) {
stop("Error: 'prior.range_max' must be a positive number.")
}
I <- 0
I1 <- target_samplesize - length(inhibit_sample) + 1
est_ID <- c()
while (I < I1) {
cat("**---- Iteration I =", I, "----**\n")
if (length(inhibit_sample) == inhibit_samplesize) {
est_ID <- inhibit_sample
val_ID <- list_stationID[!list_stationID %in% est_ID]
inhibit_sample <- NULL
cat("**---- Inhibit sample success ---**\n")
} else {
est_ID <- append(est_ID, result_max2$StationID)
cat("**---- Append success ---**\n")
}
# Working with estimation and validation sets
est_station <- data.coordinates[data.coordinates$Station_ID %in% est_ID,]
est_data <- data.pm[data.pm$Station_ID %in% est_ID,]
val_station <- data.coordinates[data.coordinates$Station_ID %in% val_ID,]
val_data <- data.pm[data.pm$Station_ID %in% val_ID,]
# Normalize covariates
mean_covariates <- colMeans(data.pm[,2:3], na.rm = TRUE)
sd_covariates <- apply(data.pm[,2:3], 2, sd, na.rm = TRUE)
est_data[,2:3] <- scale(est_data[,2:3], mean_covariates, sd_covariates)
val_data[,2:3] <- scale(val_data[,2:3], mean_covariates, sd_covariates)
# Log-transform PM values
est_data$logPM <- log(est_data$PM)
val_data$logPM <- log(val_data$PM)
# Create mesh
mesh <- inla.mesh.2d(loc = cbind(est_station$UTM_X, est_station$UTM_Y),
loc.domain = data_WH_border,
max.edge = c(15, 100),
min.angle = c(26, 21),
cutoff = 5,
plot.delay = NULL)
cat("Created mesh with", mesh$n, "vertices\n")
plot(mesh)
points(x = data_WH_border$UTM_X, y = data_WH_border$UTM_Y, cex = 0.1, col = 'red')
points(x = est_station$UTM_X, y = est_station$UTM_Y, pch = 17, cex = 1, col = "blue")
# SPDE model
spde <- inla.spde2.pcmatern(mesh = mesh, alpha = alpha, constr = TRUE,
prior.range = c(prior.range_max, 0.01),
prior.sigma = c(3, 0.01))
# Field indices
field.indices <- inla.spde.make.index("field", n.spde = spde$n.spde, n.group = n_time)
cat("**---- SPDE model and field indices setup success! ---**\n")
# Projection matrices
A.est <- inla.spde.make.A(mesh, loc =
as.matrix(data.coordinates[est_data$Station_ID, c("UTM_X", "UTM_Y")]),
group = est_data$month, n.group = n_time)
A.val <- inla.spde.make.A(mesh, loc =
as.matrix(data.coordinates[val_data$Station_ID, c("UTM_X", "UTM_Y")]),
group = val_data$month, n.group = n_time)
# Stacks
stack.est <- inla.stack(data = list(logPM = est_data$logPM), A = list(A.est, 1),
effects = list(c(field.indices, list(Intercept = 1)),
list(est_data[,2:3])),
tag = "est")
stack.val <- inla.stack(data = list(logPM = NA), A = list(A.val, 1),
effects = list(c(field.indices, list(Intercept = 1)),
list(val_data[,2:3])),
tag = "val")
stack <- inla.stack(stack.est, stack.val)
# Model formula
rprior <- list(theta = list(prior = "pccor1", param = c(0, 0.9)))
formula <- (f + f(field, model = spde, group = field.group, control.group = list(model = "ar1", hyper = rprior)))
# INLA model fit
result.1 <- inla(formula, data = inla.stack.data(stack, spde = spde),
family = "gaussian",
control.predictor = list(A = inla.stack.A(stack), compute = TRUE),
control.compute = list(cpo = FALSE, dic = TRUE, config = TRUE, return.marginals.predictor = TRUE),
control.inla = list(reordering = "metis", strategy = 'laplace'),
keep = FALSE, verbose = TRUE)
cat("INLA model fit summary:\n")
print(summary(result.1))
cat("**---- Model fitting success! ---**\n")
# Calculate validation metrics
validation.res <- calculate_validation_metrics(stack, result.1, val_data)
validation.res$sampleSize <- length(est_ID)
validation.res$SampleID <- est_ID
file_path <- file.path(outpath, txt_name)
# Write results to file
if (!file.exists(file_path)) {
file.create(file_path)
}
selected_items <- round(unlist(validation.res[c("sampleSize", "cover", "dic", "rmse", "mae", "mse", "r2", "GroupRho", "cor", "SampleID")]), 4)
write.table(selected_items, file_path, append = TRUE, col.names = FALSE)
cat("\n", file = file_path, append = TRUE)
cat("**---- Results written to file ----**\n")
# Update sample
new_data <- dis_Jug(validation.res$val_data, sampleDis, est_station, val_station)
result_max2 <- new_data %>%
select(Station_ID, month, res) %>%
group_by(Station_ID) %>%
summarise(total_res = sum(res)) %>%
arrange(desc(total_res)) %>%
slice(1) %>%
select(StationID = Station_ID)
I <- I + 1
cat("**---- Iteration update success! ---**\n")
}
cat("**---- Calibration finished successfully ---**\n")
}, error = function(e) {
cat("An error occurred in asts_function: ", e$message, "\n")
return(NULL)
})
}
#
# Function: load_asts
# Description
# The load_asts function is designed to perform a series of operations across multiple iterations, generating filenames and processing data samples.
# It includes input validation to ensure that the parameters are within expected ranges and types.
# During each iteration, it calls external functions to analyze samples and perform additional computations.
#
# Parameters
# alpha: Numeric. A weight or proportion used for certain calculations, expected to be between 0 and 1.
# prior_range_max: Numeric. The maximum value for a prior range, used for statistical or probabilistic analysis. Must be positive.
# sampleDis: Numeric. Represents the distance or distribution of the sample, affecting data sampling methods. Must be non-negative.
# borderDis: Numeric. The boundary distance, used to define the limits or constraints of sampling. Must be non-negative.# iterations: Numeric.
# The number of attempts or iterations the loop should execute. Must be a positive integer.
# ini_sample_num: Numeric. The initial number of samples, used to determine the starting quantity of data. Must be positive.
# target_samplesize: Numeric. The target sample size, indicating the desired number of samples in the dataset. Must be positive.
load_asts <- function(alpha, prior_range_max, sampleDis, borderDis, iterations) {
# Basic input validation
if (!is.numeric(alpha) || alpha < 0 || alpha > 1) {
stop("Alpha should be a numeric value between 0 and 1.")
}
if (!is.numeric(prior_range_max) || prior_range_max <= 0) {
stop("prior_range_max should be a positive numeric value.")
}
if (!is.numeric(sampleDis) || sampleDis < 0) {
stop("sampleDis should be a non-negative numeric value.")
}
if (!is.numeric(borderDis) || borderDis < 0) {
stop("borderDis should be a non-negative numeric value.")
}
if (!is.numeric(iterations) || iterations <= 0) {
stop("iterations should be a positive integer.")
}
if (!is.numeric(ini_sample_num) || ini_sample_num <= 0) {
stop("ini_sample_num should be a positive numeric value.")
}
if (!is.numeric(target_samplesize) || target_samplesize <= 0) {
stop("target_samplesize should be a positive numeric value.")
}
# Start the main loop
for (i in 1:as.integer(iterations)) {
# Generate file name
file_name <- paste0(filename, i, ".txt")
# Assume analyze_inhibit_sample is a predefined function
inhibit_sample <- analyze_inhibit_sample(ini_sample_num, sampleDis, as.integer(borderDis))
# Condition to check, e.g. whether inhibit_sample meets criteria
if (is.null(inhibit_sample)) {
message("Inhibit sample returned NULL for iteration ", i, ". Skipping.")
next
}
# Assume asts_function is a predefined function
asts_function(file_name,
as.numeric(alpha),
as.numeric(prior_range_max))
# Print the processed file name for confirmation
print(paste("Processed:", file_name))
}
}
# Function: asts_start
# Description: Iterates through combinations of parameters to execute the `load_asts` function multiple times.
#
# Parameters:
# - para.combinations: A data frame. Each row contains a set of parameters required for `load_asts`.
# Expected columns include "alpha", "prior.range_max", "sampleDis", and "borderDis".
# - iterations: Numeric. The number of times `load_asts` should be executed for each parameter combination.
#
# Dependencies: Requires the `load_asts` function to be defined elsewhere.
#
# Returns: None. This function performs its operations via side effects, calling `load_asts`.
asts_start <- function(para.combinations, iterations) {
# Check that iterations is a numeric value
if (!is.numeric(iterations) || iterations <= 0) {
stop("Iterations must be a positive numeric value.")
}
# Iterate through each parameter combination
for (i in 1:nrow(para.combinations)) {
# Extract each set of parameters, ensuring the expected column names are present
if (!all(c("alpha", "prior.range_max", "sampleDis", "borderDis") %in% names(para.combinations))) {
stop("para.combinations must contain columns: alpha, prior.range_max, sampleDis, and borderDis.")
}
alpha <- as.numeric(para.combinations[i, "alpha"])
prior_range_max <- as.numeric(para.combinations[i, "prior.range_max"])
sampleDis <- as.numeric(para.combinations[i, "sampleDis"])
borderDis <- as.numeric(para.combinations[i, "borderDis"])
# Call load_asts function with extracted parameters
load_asts(alpha, prior_range_max, sampleDis, borderDis, iterations)
}
}
# Function to process text files in a directory and find the file with the smallest RMSE
# Arguments:
# directory_path: A string indicating the path to the directory containing text files
# Returns:
# Outputs details of the file with the minimum RMSE, including RMSE, R², MAE, MSE, and sample information
extract_result <- function(directory_path) {
# Validate that the directory exists
if (!dir.exists(directory_path)) {
stop("The specified directory does not exist.")
}
# List all txt files in the directory
file_list <- list.files(path = directory_path, pattern = "\\.txt$", full.names = TRUE)
# Check if there are any txt files in the directory
if (length(file_list) == 0) {
stop("No .txt files found in the specified directory.")
}
# Function to read and process each individual file
process_file <- function(file_path) {
# Attempt to read the file, handle any reading errors
file_lines <- tryCatch(readLines(file_path), error = function(e) {
warning(paste("Error reading file:", file_path, "Skipped."))
return(NULL)
})
# Return NULL if file reading fails
if (is.null(file_lines)) return(NULL)
# Initialize variables to store file data
data_list <- list() # Holds all parsed entries
current_entry <- list() # Holds current parsing entry
sample_size_current <- NA # Tracks current sample size
# Process each line in the file
for (line in file_lines) {
line <- trimws(line) # Remove any leading/trailing whitespace
# Only process non-empty lines
if (nchar(line) > 0) {
key_value <- unlist(strsplit(line, " ")) # Split the line into key-value pairs
key <- key_value[1] # Extract the key
value <- as.numeric(key_value[2]) # Convert value to numeric
# Check for sampleSize key indicating a new entry
if (key == "\"sampleSize\"") {
# Save current entry if it exists
if (!is.na(sample_size_current)) {
data_list[[as.character(sample_size_current)]] <- current_entry
}
# Update to new sample size and reset the current entry
sample_size_current <- value
current_entry <- list()
}
# Add the key-value pair to the current entry
current_entry[[key]] <- value
}
}
# Ensure the last entry is added to the data list
if (!is.na(sample_size_current)) {
data_list[[as.character(sample_size_current)]] <- current_entry
}
# Determine the last entry for the file processed
last_sample_size <- as.character(max(as.numeric(names(data_list))))
last_entry <- data_list[[last_sample_size]]
# Return the collected data
list(
rmse = last_entry[["\"rmse\""]],
entry = last_entry,
sample_size = last_sample_size,
file_path = file_path
)
}
# Process all files in the directory
results <- map(file_list, process_file)
# Filter out any NULL results due to failed file processing
results <- results[!sapply(results, is.null)]
# Check if there are valid results
if (length(results) == 0) {
stop("No valid data processed from files.")
}
# Extract RMSE values from the results and identify the file with the minimum RMSE
rmse_values <- map_dbl(results, "rmse")
min_rmse_index <- which.min(rmse_values)
min_rmse_scenario <- results[[min_rmse_index]]
# Output details of the file with the minimum RMSE
cat(
"File with minimum RMSE:", min_rmse_scenario$file_path, "\n",
"RMSE =", min_rmse_scenario$rmse, "\n",
"R² =", min_rmse_scenario$entry[["\"r2\""]], "\n",
"MAE =", min_rmse_scenario$entry[["\"mae\""]], "\n",
"MSE =", min_rmse_scenario$entry[["\"mse\""]], "\n",
"SampleSize =", min_rmse_scenario$entry[["\"sampleSize\""]], "\n",
"SampleIDs =", paste0("SampleID", 1:min_rmse_scenario$entry[["\"sampleSize\""]],
"=", unlist(min_rmse_scenario$entry[
paste0("\"SampleID", 1:min_rmse_scenario$entry[["\"sampleSize\""]], "\"")]),
collapse=", "), "\n"
)
}