-
Notifications
You must be signed in to change notification settings - Fork 3
/
vec2face.py
262 lines (215 loc) · 11.2 KB
/
vec2face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
from dataloader import LMDBDataLoader
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
from pixel_generator.vec2face.taming.modules.discriminator_loss import VQLPIPSWithDiscriminator
from pixel_generator.vec2face.taming.modules.discriminator.model import Discriminator
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import pixel_generator.vec2face.model_vec2face as model_vec2face
from engine_vec2face import train_one_epoch
torch.autograd.set_detect_anomaly(True)
def get_args_parser():
parser = argparse.ArgumentParser('vec2face training', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vec2face_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=112, type=int,
help='images input size')
# Pre-trained enc parameters
parser.add_argument('--use_rep', action='store_true', help='use representation as condition.')
parser.add_argument('--use_class_label', action='store_true', help='use class label as condition.')
parser.add_argument('--rep_dim', default=512, type=int)
# Pixel generation parameters
parser.add_argument('--rep_drop_prob', default=0.0, type=float)
# Vec2Face params
parser.add_argument('--mask_ratio_min', type=float, default=0.5,
help='Minimum mask ratio')
parser.add_argument('--mask_ratio_max', type=float, default=1.0,
help='Maximum mask ratio')
parser.add_argument('--mask_ratio_mu', type=float, default=0.75,
help='Mask ratio distribution peak')
parser.add_argument('--mask_ratio_std', type=float, default=0.25,
help='Mask ratio distribution std')
# Optimizer parameters
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--train_source', type=str,
help='image path --- .lmdb file')
parser.add_argument('--mask', default=None, help='training position mask', type=str)
parser.add_argument('--augmentation', default='noaug', type=str,
help='Augmentation type')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--workers', default=4, type=int)
parser.add_argument('--pin_memory', action='store_false',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
# parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
# init log writer
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
# simple augmentation
if args.augmentation == "noaug":
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5],
[0.5, 0.5, 0.5])])
elif args.augmentation == "randcrop":
transform_train = transforms.Compose([
transforms.Resize(112, interpolation=3),
transforms.RandomCrop(112),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
elif args.augmentation == "randresizedcrop":
transform_train = transforms.Compose([
transforms.RandomResizedCrop(args.input_size, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
else:
raise NotImplementedError
dataset = LMDBDataLoader(args, transform=transform_train)
data_loader_train = dataset.get_loader()
# define the model
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 112
model = model_vec2face.__dict__[args.model](mask_ratio_mu=args.mask_ratio_mu, mask_ratio_std=args.mask_ratio_std,
mask_ratio_min=args.mask_ratio_min, mask_ratio_max=args.mask_ratio_max,
use_rep=args.use_rep,
rep_dim=args.rep_dim,
rep_drop_prob=args.rep_drop_prob,
use_class_label=args.use_class_label)
loss = VQLPIPSWithDiscriminator(disc_start=1000, disc_weight=0.8)
disc = Discriminator(dims=(64, 128, 256, 512))
model.to(device)
disc.to(device)
loss.to(device)
model_without_ddp = model
disc_without_ddp = disc
print("Mage Model = %s" % str(model_without_ddp))
print("VQ-disc Model = %s" % str(disc))
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.gpu],
find_unused_parameters=True)
model_without_ddp = model.module
disc = torch.nn.parallel.DistributedDataParallel(disc,
device_ids=[args.gpu],
find_unused_parameters=True)
disc_without_ddp = disc.module
# Log parameters
n_params = sum(p.numel() for p in model_without_ddp.parameters() if p.requires_grad)
disc_n_params = sum(p.numel() for p in disc_without_ddp.parameters() if p.requires_grad)
print("Number of trainable parameters for Vec2Face: {}M".format(n_params / 1e6))
print("Number of trainable parameters for VQ disc: {}M".format(disc_n_params / 1e6))
if global_rank == 0:
log_writer.add_scalar('mage_num_params', n_params / 1e6, 0)
log_writer.add_scalar('vq_disc_num_params', disc_n_params / 1e6, 0)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, betas=(0.9, 0.99))
dis_optimizer = torch.optim.AdamW(disc.parameters(), lr=args.lr, betas=(0.9, 0.99))
loss_scaler = NativeScaler()
misc.load_model(args=args,
model_without_ddp=model_without_ddp,
disc_without_ddp=disc_without_ddp,
optimizer=optimizer,
disc_optimizer=dis_optimizer,
loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, disc, data_loader_train, loss,
optimizer, dis_optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if train_stats is None:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp,
disc_without_ddp=disc_without_ddp, optimizer=optimizer, disc_optimizer=dis_optimizer,
loss_scaler=loss_scaler, epoch=epoch)
if args.output_dir and (epoch % 25 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp,
disc_without_ddp=disc_without_ddp, optimizer=optimizer, disc_optimizer=dis_optimizer,
loss_scaler=loss_scaler, epoch=epoch)
misc.save_model_last(
args=args, model=model, model_without_ddp=model_without_ddp,
disc_without_ddp=disc_without_ddp, optimizer=optimizer, disc_optimizer=dis_optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args.log_dir = args.output_dir
main(args)