diff --git a/src/core/MOM_density_integrals.F90 b/src/core/MOM_density_integrals.F90 index 9fed528e71..b73524e362 100644 --- a/src/core/MOM_density_integrals.F90 +++ b/src/core/MOM_density_integrals.F90 @@ -141,14 +141,21 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & real, optional, intent(in) :: Z_0p !< The height at which the pressure is 0 [Z ~> m] ! Local variables - real :: T5(5), S5(5) ! Temperatures and salinities at five quadrature points [C ~> degC] and [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: r5(5) ! Densities at five quadrature points [R ~> kg m-3] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: r5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Densities anomalies along a line of subgrid locations [R ~> kg m-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: r15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Densities at an array of subgrid locations [R ~> kg m-3] real :: rho_anom ! The depth averaged density anomaly [R ~> kg m-3] real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] real :: GxRho ! The product of the gravitational acceleration and reference density [R L2 Z-1 T-2 ~> Pa m-1] real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1] real :: dz ! The layer thickness [Z ~> m] + real :: dz_x(5,HI%iscB:HI%iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m] + real :: dz_y(5,HI%isc:HI%iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m] real :: z0pres ! The height at which the pressure is zero [Z ~> m] real :: hWght ! A pressure-thickness below topography [Z ~> m] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [Z ~> m] @@ -162,7 +169,10 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & logical :: do_massWeight ! Indicates whether to do mass weighting. logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation ! of density anomalies. - integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n, pos ! These array bounds work for the indexing convention of the input arrays, but ! on the computational domain defined for the output arrays. @@ -188,123 +198,169 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & "dz_neglect must be present if useMassWghtInterp is present and true.") endif ; endif - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - dz = z_t(i,j) - z_b(i,j) - do n=1,5 - T5(n) = T(i,j) ; S5(n) = S(i,j) - p5(n) = -GxRho*((z_t(i,j) - z0pres) - 0.25*real(n-1)*dz) + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + dz = z_t(i,j) - z_b(i,j) + do n=1,5 + T5(i*5+n) = T(i,j) ; S5(i*5+n) = S(i,j) + p5(i*5+n) = -GxRho*((z_t(i,j) - z0pres) - 0.25*real(n-1)*dz) + enddo enddo + if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5) endif - dpa(i,j) = G_e*dz*rho_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the pressure anomaly. - if (present(intz_dpa)) intz_dpa(i,j) = 0.5*G_e*dz**2 * & - (rho_anom - C1_90*(16.0*(r5(4)-r5(2)) + 7.0*(r5(5)-r5(1))) ) - enddo ; enddo + do i=Isq,Ieq+1 + ! Use Boole's rule to estimate the pressure anomaly change. + rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) + if (.not.use_rho_ref) rho_anom = rho_anom - rho_ref + dz = z_t(i,j) - z_b(i,j) + dpa(i,j) = G_e*dz*rho_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the pressure anomaly. + if (present(intz_dpa)) intz_dpa(i,j) = 0.5*G_e*dz**2 * & + (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) + enddo + enddo - if (present(intx_dpa)) then ; do j=js,je ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., -bathyT(i,j)-z_t(i+1,j), -bathyT(i+1,j)-z_t(i,j)) - if (hWght > 0.) then - hL = (z_t(i,j) - z_b(i,j)) + dz_neglect - hR = (z_t(i+1,j) - z_b(i+1,j)) + dz_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + if (present(intx_dpa)) then ; do j=js,je + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., -bathyT(i,j)-z_t(i+1,j), -bathyT(i+1,j)-z_t(i,j)) + if (hWght > 0.) then + hL = (z_t(i,j) - z_b(i,j)) + dz_neglect + hR = (z_t(i+1,j) - z_b(i+1,j)) + dz_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + ! T, S, and z are interpolated in the horizontal. The z interpolation + ! is linear, but for T and S it may be thickness weighted. + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + dz_x(m,i) = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i+1,j) - z_b(i+1,j)) + pos = i*15+(m-2)*5 + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) + p15(pos+1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i+1,j)) - z0pres) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_x(m,i) + enddo + enddo + enddo + + if (use_rho_ref) then + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref=rho_ref) else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15) endif - intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) - do m=2,4 - ! T, S, and z are interpolated in the horizontal. The z interpolation - ! is linear, but for T and S it may be thickness weighted. - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - dz = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i+1,j) - z_b(i+1,j)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) - p5(1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i+1,j)) - z0pres) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) + GxRho*0.25*dz - enddo + do I=Isq,Ieq + intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) + ! Use Boole's rule to estimate the pressure anomaly change. if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3))) + do m=2,4 + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3))) + enddo else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref ) + do m=2,4 + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) - rho_ref ) + enddo endif + ! Use Boole's rule to integrate the bottom pressure anomaly values in x. + intx_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & + 12.0*intz(3)) + enddo + enddo ; endif + if (present(inty_dpa)) then ; do J=Jsq,Jeq + do i=is,ie + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., -bathyT(i,j)-z_t(i,j+1), -bathyT(i,j+1)-z_t(i,j)) + if (hWght > 0.) then + hL = (z_t(i,j) - z_b(i,j)) + dz_neglect + hR = (z_t(i,j+1) - z_b(i,j+1)) + dz_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + ! T, S, and z are interpolated in the horizontal. The z interpolation + ! is linear, but for T and S it may be thickness weighted. + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + dz_y(m,i) = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i,j+1) - z_b(i,j+1)) + pos = i*15+(m-2)*5 + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) + p15(pos+1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i,j+1)) - z0pres) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_y(m,i) + enddo + enddo enddo - ! Use Boole's rule to integrate the bottom pressure anomaly values in x. - intx_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & - 12.0*intz(3)) - enddo ; enddo ; endif - if (present(inty_dpa)) then ; do J=Jsq,Jeq ; do i=is,ie - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., -bathyT(i,j)-z_t(i,j+1), -bathyT(i,j+1)-z_t(i,j)) - if (hWght > 0.) then - hL = (z_t(i,j) - z_b(i,j)) + dz_neglect - hR = (z_t(i,j+1) - z_b(i,j+1)) + dz_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + if (use_rho_ref) then + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15) endif - intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) - do m=2,4 - ! T, S, and z are interpolated in the horizontal. The z interpolation - ! is linear, but for T and S it may be thickness weighted. - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - dz = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i,j+1) - z_b(i,j+1)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) - p5(1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i,j+1)) - z0pres) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) - p5(n) = p5(n-1) + GxRho*0.25*dz + do i=is,ie + intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) + ! Use Boole's rule to estimate the pressure anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + if (use_rho_ref) then + intz(m) = G_e*dz_y(m,i)*( C1_90*(7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3))) + else + intz(m) = G_e*dz_y(m,i)*( C1_90*(7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) - rho_ref ) + endif enddo - if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3))) - else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref ) - endif - + ! Use Boole's rule to integrate the values. + inty_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & + 12.0*intz(3)) enddo - ! Use Boole's rule to integrate the values. - inty_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & - 12.0*intz(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_density_dz_generic_pcm @@ -414,10 +470,9 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation ! of density anomalies. logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields - integer, dimension(2) :: EOSdom_q5 ! The 5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state - integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -456,8 +511,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & enddo ! Set the loop ranges for equation of state calculations at various points. - EOSdom_q5(1) = 1 ; EOSdom_q5(2) = (ieq-isq+2)*5 - EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(ieq-isq+1) + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) ! 1. Compute vertical integrals @@ -475,12 +530,12 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & if (use_varS) S25(i*5+1:i*5+5) = tv%varS(i,j,k) enddo if (use_Stanley_eos) then - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_q5, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5) u5(:) = r5(:) - rho_ref endif endif @@ -491,8 +546,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) dpa(i,j) = G_e*dz(i)*rho_anom if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. intz_dpa(i,j) = 0.5*G_e*dz(i)**2 * & (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) endif @@ -504,8 +559,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & - rho_ref dpa(i,j) = G_e*dz(i)*rho_anom if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. intz_dpa(i,j) = 0.5*G_e*dz(i)**2 * & (rho_anom - C1_90*(16.0*(u5(i*5+4)-u5(i*5+2)) + 7.0*(u5(i*5+5)-u5(i*5+1))) ) endif @@ -774,13 +829,26 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & ! a parabolic interpolation is used to compute intermediate values. ! Local variables - real :: T5(5) ! Temperatures along a line of subgrid locations [C ~> degC] - real :: S5(5) ! Salinities along a line of subgrid locations [S ~> ppt] - real :: T25(5) ! SGS temperature variance along a line of subgrid locations [C2 ~> degC2] - real :: TS5(5) ! SGS temperature-salinity covariance along a line of subgrid locations [C S ~> degC ppt] - real :: S25(5) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: r5(5) ! Density anomalies from rho_ref at quadrature points [R ~> kg m-3] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: T25((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS temperature variance along a line of subgrid + ! locations [C2 ~> degC2] + real :: TS5((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS temp-salt covariance along a line of subgrid + ! locations [C S ~> degC ppt] + real :: S25((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: r5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Densities anomalies along a line of subgrid + ! locations [R ~> kg m-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: T215((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS temperature variance along a line of subgrid + ! locations [C2 ~> degC2] + real :: TS15((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS temp-salt covariance along a line of subgrid + ! locations [C S ~> degC ppt] + real :: S215((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS salinity variance along a line of subgrid + ! locations [S2 ~> ppt2] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: r15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Densities at an array of subgrid locations [R ~> kg m-3] real :: wt_t(5), wt_b(5) ! Top and bottom weights [nondim] real :: rho_anom ! The integrated density anomaly [R ~> kg m-3] real :: w_left, w_right ! Left and right weights [nondim] @@ -790,6 +858,8 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & real :: GxRho ! The gravitational acceleration times density [R L2 Z-1 T-2 ~> kg m-2 s-2] real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1] real :: dz ! Layer thicknesses at tracer points [Z ~> m] + real :: dz_x(5,HI%iscB:HI%iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m] + real :: dz_y(5,HI%isc:HI%iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m] real :: massWeightToggle ! A non-dimensional toggle factor (0 or 1) [nondim] real :: Ttl, Tbl, Tml, Ttr, Tbr, Tmr ! Temperatures at the velocity cell corners [C ~> degC] real :: Stl, Sbl, Sml, Str, Sbr, Smr ! Salinities at the velocity cell corners [S ~> ppt] @@ -801,9 +871,12 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & real :: hWght ! A topographically limited thickness weight [Z ~> m] real :: hL, hR ! Thicknesses to the left and right [Z ~> m] real :: iDenom ! The denominator of the thickness weight expressions [Z-2 ~> m-2] - integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos logical :: use_PPM ! If false, assume zero curvature in reconstruction, i.e. PLM - logical :: use_varT, use_varS, use_covarTS + logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -824,226 +897,277 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & use_covarTS = .false. use_varS = .false. if (use_stanley_eos) then - use_varT = associated(tv%varT) - use_covarTS = associated(tv%covarTS) - use_varS = associated(tv%varS) + use_varT = associated(tv%varT) + use_covarTS = associated(tv%covarTS) + use_varS = associated(tv%varS) endif T25(:) = 0. TS5(:) = 0. S25(:) = 0. + T215(:) = 0. + TS15(:) = 0. + S215(:) = 0. do n = 1, 5 wt_t(n) = 0.25 * real(5-n) wt_b(n) = 1.0 - wt_t(n) enddo + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + ! 1. Compute vertical integrals - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - if (use_PPM) then - ! Curvature coefficient of the parabolas - s6 = 3.0 * ( 2.0*tv%S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) ) - t6 = 3.0 * ( 2.0*tv%T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) ) - endif - dz = e(i,j,K) - e(i,j,K+1) - do n=1,5 - p5(n) = -GxRho*((e(i,j,K) - z0pres) - 0.25*real(n-1)*dz) - ! Salinity and temperature points are reconstructed with PPM - S5(n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) ) + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + if (use_PPM) then + ! Curvature coefficient of the parabolas + s6 = 3.0 * ( 2.0*tv%S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) ) + t6 = 3.0 * ( 2.0*tv%T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) ) + endif + dz = e(i,j,K) - e(i,j,K+1) + do n=1,5 + p5(I*5+n) = -GxRho*((e(i,j,K) - z0pres) - 0.25*real(n-1)*dz) + ! Salinity and temperature points are reconstructed with PPM + S5(I*5+n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) ) + T5(I*5+n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) ) + enddo + if (use_stanley_eos) then + if (use_varT) T25(I*5+1:I*5+5) = tv%varT(i,j,k) + if (use_covarTS) TS5(I*5+1:I*5+5) = tv%covarTS(i,j,k) + if (use_varS) S25(I*5+1:I*5+5) = tv%varS(i,j,k) + endif enddo + if (use_stanley_eos) then - if (use_varT) T25(:) = tv%varT(i,j,k) - if (use_covarTS) TS5(:) = tv%covarTS(i,j,k) - if (use_varS) S25(:) = tv%varS(i,j,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) endif - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - dpa(i,j) = G_e*dz*rho_anom - if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. - intz_dpa(i,j) = 0.5*G_e*dz**2 * & - (rho_anom - C1_90*(16.0*(r5(4)-r5(2)) + 7.0*(r5(5)-r5(1))) ) - endif - enddo ; enddo ! end loops on j and i + do i=Isq,Ieq+1 + dz = e(i,j,K) - e(i,j,K+1) + ! Use Boole's rule to estimate the pressure anomaly change. + rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) + dpa(i,j) = G_e*dz*rho_anom + if (present(intz_dpa)) then + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. + intz_dpa(i,j) = 0.5*G_e*dz**2 * & + (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) + endif + enddo ! end loop on i + enddo ! end loop on j ! 2. Compute horizontal integrals in the x direction - if (present(intx_dpa)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! Corner values of T and S - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. - ! Note: To work in terrain following coordinates we could offset - ! this distance by the layer thickness to replicate other models. - hWght = massWeightToggle * & - max(0., -bathyT(i,j)-e(i+1,j,K), -bathyT(i+1,j)-e(i,j,K)) - if (hWght > 0.) then - hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff - hR = (e(i+1,j,K) - e(i+1,j,K+1)) + dz_subroundoff - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1./( hWght*(hR + hL) + hL*hR ) - Ttl = ( (hWght*hR)*T_t(i+1,j,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom - Tbl = ( (hWght*hR)*T_b(i+1,j,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom - Tml = ( (hWght*hR)*tv%T(i+1,j,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom - Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i+1,j,k) ) * iDenom - Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i+1,j,k) ) * iDenom - Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i+1,j,k) ) * iDenom - Stl = ( (hWght*hR)*S_t(i+1,j,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom - Sbl = ( (hWght*hR)*S_b(i+1,j,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom - Sml = ( (hWght*hR)*tv%S(i+1,j,k) + (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom - Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i+1,j,k) ) * iDenom - Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i+1,j,k) ) * iDenom - Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i+1,j,k) ) * iDenom - else - Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1,j,k); Tbr = T_b(i+1,j,k) - Tml = tv%T(i,j,k); Tmr = tv%T(i+1,j,k) - Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1,j,k); Sbr = S_b(i+1,j,k) - Sml = tv%S(i,j,k); Smr = tv%S(i+1,j,k) - endif - - do m=2,4 - w_left = wt_t(m) ; w_right = wt_b(m) - - ! Salinity and temperature points are linearly interpolated in - ! the horizontal. The subscript (1) refers to the top value in - ! the vertical profile while subscript (5) refers to the bottom - ! value in the vertical profile. - T_top = w_left*Ttl + w_right*Ttr - T_mn = w_left*Tml + w_right*Tmr - T_bot = w_left*Tbl + w_right*Tbr - - S_top = w_left*Stl + w_right*Str - S_mn = w_left*Sml + w_right*Smr - S_bot = w_left*Sbl + w_right*Sbr - - ! Pressure - dz = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i+1,j,K) - e(i+1,j,K+1)) - p5(1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i+1,j,K)) - z0pres) - do n=2,5 - p5(n) = p5(n-1) + GxRho*0.25*dz - enddo - - ! Parabolic reconstructions in the vertical for T and S - if (use_PPM) then - ! Coefficients of the parabolas - s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) - t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) - endif - do n=1,5 - S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) - enddo - if (use_stanley_eos) then - if (use_varT) T25(:) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i+1,j,k) - if (use_covarTS) TS5(:) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i+1,j,k) - if (use_varS) S25(:) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i+1,j,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + if (present(intx_dpa)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! Corner values of T and S + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. + ! Note: To work in terrain following coordinates we could offset + ! this distance by the layer thickness to replicate other models. + hWght = massWeightToggle * & + max(0., -bathyT(i,j)-e(i+1,j,K), -bathyT(i+1,j)-e(i,j,K)) + if (hWght > 0.) then + hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff + hR = (e(i+1,j,K) - e(i+1,j,K+1)) + dz_subroundoff + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1./( hWght*(hR + hL) + hL*hR ) + Ttl = ( (hWght*hR)*T_t(i+1,j,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom + Tbl = ( (hWght*hR)*T_b(i+1,j,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom + Tml = ( (hWght*hR)*tv%T(i+1,j,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom + Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i+1,j,k) ) * iDenom + Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i+1,j,k) ) * iDenom + Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i+1,j,k) ) * iDenom + Stl = ( (hWght*hR)*S_t(i+1,j,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom + Sbl = ( (hWght*hR)*S_b(i+1,j,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom + Sml = ( (hWght*hR)*tv%S(i+1,j,k) + (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom + Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i+1,j,k) ) * iDenom + Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i+1,j,k) ) * iDenom + Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i+1,j,k) ) * iDenom else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1,j,k); Tbr = T_b(i+1,j,k) + Tml = tv%T(i,j,k); Tmr = tv%T(i+1,j,k) + Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1,j,k); Sbr = S_b(i+1,j,k) + Sml = tv%S(i,j,k); Smr = tv%S(i+1,j,k) endif - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) ) - enddo ! m - intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) + do m=2,4 + w_left = wt_t(m) ; w_right = wt_b(m) - ! Use Boole's rule to integrate the bottom pressure anomaly values in x. - intx_dpa(I,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + ! Salinity and temperature points are linearly interpolated in + ! the horizontal. The subscript (1) refers to the top value in + ! the vertical profile while subscript (5) refers to the bottom + ! value in the vertical profile. + T_top = w_left*Ttl + w_right*Ttr + T_mn = w_left*Tml + w_right*Tmr + T_bot = w_left*Tbl + w_right*Tbr - enddo ; enddo ; endif + S_top = w_left*Stl + w_right*Str + S_mn = w_left*Sml + w_right*Smr + S_bot = w_left*Sbl + w_right*Sbr - ! 3. Compute horizontal integrals in the y direction - if (present(inty_dpa)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! Corner values of T and S - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. - ! Note: To work in terrain following coordinates we could offset - ! this distance by the layer thickness to replicate other models. - hWght = massWeightToggle * & - max(0., -bathyT(i,j)-e(i,j+1,K), -bathyT(i,j+1)-e(i,j,K)) - if (hWght > 0.) then - hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff - hR = (e(i,j+1,K) - e(i,j+1,K+1)) + dz_subroundoff - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1./( hWght*(hR + hL) + hL*hR ) - Ttl = ( (hWght*hR)*T_t(i,j+1,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom - Tbl = ( (hWght*hR)*T_b(i,j+1,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom - Tml = ( (hWght*hR)*tv%T(i,j+1,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom - Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i,j+1,k) ) * iDenom - Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i,j+1,k) ) * iDenom - Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i,j+1,k) ) * iDenom - Stl = ( (hWght*hR)*S_t(i,j+1,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom - Sbl = ( (hWght*hR)*S_b(i,j+1,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom - Sml = ( (hWght*hR)*tv%S(i,j+1,k)+ (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom - Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i,j+1,k) ) * iDenom - Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i,j+1,k) ) * iDenom - Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i,j+1,k) ) * iDenom + ! Pressure + dz_x(m,i) = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i+1,j,K) - e(i+1,j,K+1)) + + pos = i*15+(m-2)*5 + p15(pos+1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i+1,j,K)) - z0pres) + do n=2,5 + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_x(m,i) + enddo + + ! Parabolic reconstructions in the vertical for T and S + if (use_PPM) then + ! Coefficients of the parabolas + s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) + t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) + endif + do n=1,5 + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) + enddo + if (use_stanley_eos) then + if (use_varT) T215(pos+1:pos+5) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i+1,j,k) + if (use_covarTS) TS15(pos+1:pos+5) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i+1,j,k) + if (use_varS) S215(pos+1:pos+5) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i+1,j,k) + endif + if (use_stanley_eos) then + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + else + call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + endif + enddo + enddo + + if (use_stanley_eos) then + call calculate_density(T15, S15, p15, T215, TS15, S215, r15, EOS, EOSdom_q15, rho_ref=rho_ref) else - Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1,k); Tbr = T_b(i,j+1,k) - Tml = tv%T(i,j,k); Tmr = tv%T(i,j+1,k) - Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1,k); Sbr = S_b(i,j+1,k) - Sml = tv%S(i,j,k); Smr = tv%S(i,j+1,k) + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref=rho_ref) endif - do m=2,4 - w_left = wt_t(m) ; w_right = wt_b(m) - - ! Salinity and temperature points are linearly interpolated in - ! the horizontal. The subscript (1) refers to the top value in - ! the vertical profile while subscript (5) refers to the bottom - ! value in the vertical profile. - T_top = w_left*Ttl + w_right*Ttr - T_mn = w_left*Tml + w_right*Tmr - T_bot = w_left*Tbl + w_right*Tbr - - S_top = w_left*Stl + w_right*Str - S_mn = w_left*Sml + w_right*Smr - S_bot = w_left*Sbl + w_right*Sbr - - ! Pressure - dz = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i,j+1,K) - e(i,j+1,K+1)) - p5(1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i,j+1,K)) - z0pres) - do n=2,5 - p5(n) = p5(n-1) + GxRho*0.25*dz - enddo + do I=Isq,Ieq + do m=2,4 + pos = i*15+(m-2)*5 + ! Use Boole's rule to estimate the pressure anomaly change. + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) ) + enddo ! m + intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) - ! Parabolic reconstructions in the vertical for T and S - if (use_PPM) then - ! Coefficients of the parabolas - s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) - t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) - endif - do n=1,5 - S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) - enddo + ! Use Boole's rule to integrate the bottom pressure anomaly values in x. + intx_dpa(I,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) - if (use_stanley_eos) then - if (use_varT) T25(:) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i,j+1,k) - if (use_covarTS) TS5(:) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i,j+1,k) - if (use_varS) S25(:) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i,j+1,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + enddo + enddo ; endif + + ! 3. Compute horizontal integrals in the y direction + if (present(inty_dpa)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! Corner values of T and S + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. + ! Note: To work in terrain following coordinates we could offset + ! this distance by the layer thickness to replicate other models. + hWght = massWeightToggle * & + max(0., -bathyT(i,j)-e(i,j+1,K), -bathyT(i,j+1)-e(i,j,K)) + if (hWght > 0.) then + hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff + hR = (e(i,j+1,K) - e(i,j+1,K+1)) + dz_subroundoff + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1./( hWght*(hR + hL) + hL*hR ) + Ttl = ( (hWght*hR)*T_t(i,j+1,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom + Tbl = ( (hWght*hR)*T_b(i,j+1,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom + Tml = ( (hWght*hR)*tv%T(i,j+1,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom + Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i,j+1,k) ) * iDenom + Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i,j+1,k) ) * iDenom + Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i,j+1,k) ) * iDenom + Stl = ( (hWght*hR)*S_t(i,j+1,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom + Sbl = ( (hWght*hR)*S_b(i,j+1,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom + Sml = ( (hWght*hR)*tv%S(i,j+1,k)+ (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom + Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i,j+1,k) ) * iDenom + Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i,j+1,k) ) * iDenom + Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i,j+1,k) ) * iDenom else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1,k); Tbr = T_b(i,j+1,k) + Tml = tv%T(i,j,k); Tmr = tv%T(i,j+1,k) + Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1,k); Sbr = S_b(i,j+1,k) + Sml = tv%S(i,j,k); Smr = tv%S(i,j+1,k) endif - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) ) - enddo ! m - intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) + do m=2,4 + w_left = wt_t(m) ; w_right = wt_b(m) + + ! Salinity and temperature points are linearly interpolated in + ! the horizontal. The subscript (1) refers to the top value in + ! the vertical profile while subscript (5) refers to the bottom + ! value in the vertical profile. + T_top = w_left*Ttl + w_right*Ttr + T_mn = w_left*Tml + w_right*Tmr + T_bot = w_left*Tbl + w_right*Tbr + + S_top = w_left*Stl + w_right*Str + S_mn = w_left*Sml + w_right*Smr + S_bot = w_left*Sbl + w_right*Sbr + + ! Pressure + dz_y(m,i) = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i,j+1,K) - e(i,j+1,K+1)) + + pos = i*15+(m-2)*5 + p15(pos+1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i,j+1,K)) - z0pres) + do n=2,5 + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_y(m,i) + enddo + + ! Parabolic reconstructions in the vertical for T and S + if (use_PPM) then + ! Coefficients of the parabolas + s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) + t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) + endif + do n=1,5 + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) + enddo + + if (use_stanley_eos) then + if (use_varT) T215(pos+1:pos+5) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i,j+1,k) + if (use_covarTS) TS15(pos+1:pos+5) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i,j+1,k) + if (use_varS) S215(pos+1:pos+5) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i,j+1,k) + endif + enddo + enddo + + if (use_stanley_eos) then + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + T215(15*HI%isc+1:), TS15(15*HI%isc+1:), S215(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) + else + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) + endif - ! Use Boole's rule to integrate the bottom pressure anomaly values in y. - inty_dpa(i,J) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + do i=HI%isc,HI%iec + do m=2,4 + ! Use Boole's rule to estimate the pressure anomaly change. + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_y(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) ) + enddo ! m + intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) - enddo ; enddo ; endif + ! Use Boole's rule to integrate the bottom pressure anomaly values in y. + inty_dpa(i,J) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + enddo + enddo ; endif end subroutine int_density_dz_generic_ppm @@ -1161,12 +1285,19 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d ! series for log(1-eps/1+eps) that assumes that |eps| < 0.34. ! Local variables - real :: T5(5) ! Temperatures at five quadrature points [C ~> degC] - real :: S5(5) ! Salinities at five quadrature points [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: a5(5) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1] + real :: T5((5*HI%isd+1):(5*(HI%ied+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%isd+1):(5*(HI%ied+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%isd+1):(5*(HI%ied+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: a5((5*HI%isd+1):(5*(HI%ied+2))) ! Specific volumes anomalies along a line of subgrid + ! locations [R-1 ~> m3 kg-3] + real :: T15((15*HI%isd+1):(15*(HI%ied+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%isd+1):(15*(HI%ied+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%isd+1):(15*(HI%ied+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: a15((15*HI%isd+1):(15*(HI%ied+1))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3] real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1] real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa] + real :: dp_x(5,SZIB_(HI)) ! The pressure change through a layer along an x-line of subgrid locations [Z ~> m] + real :: dp_y(5,SZI_(HI)) ! The pressure change through a layer along a y-line of subgrid locations [Z ~> m] real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa] real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2] @@ -1178,7 +1309,10 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d ! 5 sub-column locations [L2 T-2 ~> m2 s-2] logical :: do_massWeight ! Indicates whether to do mass weighting. real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] - integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, halo + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, pos, halo Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB halo = 0 ; if (present(halo_size)) halo = MAX(halo_size,0) @@ -1195,110 +1329,146 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d "dP_neglect must be present if useMassWghtInterp is present and true.") endif ; endif - do j=jsh,jeh ; do i=ish,ieh - dp = p_b(i,j) - p_t(i,j) - do n=1,5 - T5(n) = T(i,j) ; S5(n) = S(i,j) - p5(n) = p_b(i,j) - 0.25*real(n-1)*dp + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(ieh-ish+1) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + + do j=jsh,jeh + do i=ish,ieh + dp = p_b(i,j) - p_t(i,j) + pos = 5*i + do n=1,5 + T5(pos+n) = T(i,j) ; S5(pos+n) = S(i,j) + p5(pos+n) = p_b(i,j) - 0.25*real(n-1)*dp + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T5(5*ish+1:), S5(5*ish+1:), p5(5*ish+1:), a5(5*ish+1:), EOS, & + EOSdom_h5, spv_ref=alpha_ref) - ! Use Boole's rule to estimate the interface height anomaly change. - alpha_anom = C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + 12.0*a5(3)) - dza(i,j) = dp*alpha_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the interface height anomaly. - if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & - (alpha_anom - C1_90*(16.0*(a5(4)-a5(2)) + 7.0*(a5(5)-a5(1))) ) - enddo ; enddo + do i=ish,ieh + dp = p_b(i,j) - p_t(i,j) + ! Use Boole's rule to estimate the interface height anomaly change. + pos = 5*i + alpha_anom = C1_90*(7.0*(a5(pos+1)+a5(pos+5)) + 32.0*(a5(pos+2)+a5(pos+4)) + 12.0*a5(pos+3)) + dza(i,j) = dp*alpha_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the interface height anomaly. + if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & + (alpha_anom - C1_90*(16.0*(a5(pos+4)-a5(pos+2)) + 7.0*(a5(pos+5)-a5(pos+1))) ) + enddo + enddo - if (present(intx_dza)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(intx_dza)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + pos = i*15+(m-2)*5 - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - p5(1) = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) - dp = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i+1,j) - p_t(i+1,j)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + p15(pos+1) = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) + dp_x(m,I) = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i+1,j) - p_t(i+1,j)) + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) - 0.25*dp + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) - 0.25*dp_x(m,I) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + enddo + + call calculate_spec_vol(T15(15*Isq+1:), S15(15*Isq+1:), p15(15*Isq+1:), & + a15(15*Isq+1:), EOS, EOSdom_q15, spv_ref=alpha_ref) - ! Use Boole's rule to estimate the interface height anomaly change. - intp(m) = dp*( C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + & - 12.0*a5(3))) + do I=Isq,Ieq + intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) + ! Use Boole's rule to estimate the interface height anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + intp(m) = dp_x(m,I)*( C1_90*(7.0*(a15(pos+1)+a15(pos+5)) + 32.0*(a15(pos+2)+a15(pos+4)) + & + 12.0*a15(pos+3))) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + intx_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - intx_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif - if (present(inty_dza)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(inty_dza)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + pos = i*15+(m-2)*5 - intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - p5(1) = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) - dp = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i,j+1) - p_t(i,j+1)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) - 0.25*dp + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + p15(pos+1) = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) + dp_y(m,i) = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i,j+1) - p_t(i,j+1)) + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) - 0.25*dp_y(m,i) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + enddo + + call calculate_spec_vol(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + a15(15*HI%isc+1:), EOS, EOSdom_h15, spv_ref=alpha_ref) + + do i=HI%isc,HI%iec - ! Use Boole's rule to estimate the interface height anomaly change. - intp(m) = dp*( C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + & - 12.0*a5(3))) + intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) + ! Use Boole's rule to estimate the interface height anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + intp(m) = dp_y(m,i)*( C1_90*(7.0*(a15(pos+1)+a15(pos+5)) + 32.0*(a15(pos+2)+a15(pos+4)) + & + 12.0*a15(pos+3))) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in y. + inty_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in y. - inty_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_spec_vol_dp_generic_pcm @@ -1358,14 +1528,15 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, ! Boole's rule to do the horizontal integrals, and from a truncation in the ! series for log(1-eps/1+eps) that assumes that |eps| < 0.34. - real :: T5(5) ! Temperatures at five quadrature points [C ~> degC] - real :: S5(5) ! Salinities at five quadrature points [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: a5(5) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1] - real :: T15(15) ! Temperatures at fifteen interior quadrature points [C ~> degC] - real :: S15(15) ! Salinities at fifteen interior quadrature points [S ~> ppt] - real :: p15(15) ! Pressures at fifteen quadrature points [R L2 T-2 ~> Pa] - real :: a15(15) ! Specific volumes at fifteen quadrature points [R-1 ~> m3 kg-1] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: a5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Specific volumes anomalies along a line of subgrid + ! locations [R-1 ~> m3 kg-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: a15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3] real :: wt_t(5), wt_b(5) ! Weights of top and bottom values at quadrature points [nondim] real :: T_top, T_bot ! Horizontally interpolated temperature at the cell top and bottom [C ~> degC] real :: S_top, S_bot ! Horizontally interpolated salinity at the cell top and bottom [S ~> ppt] @@ -1373,7 +1544,7 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1] real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa] - real :: dp_90(2:4) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa] + real :: dp_90(2:4,SZIB_(HI)) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa] real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa] real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2] @@ -1385,6 +1556,9 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, ! 5 sub-column locations [L2 T-2 ~> m2 s-2] real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] logical :: do_massWeight ! Indicates whether to do mass weighting. + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -1397,140 +1571,157 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, wt_b(n) = 1.0 - wt_t(n) enddo + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + ! 1. Compute vertical integrals - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - dp = p_b(i,j) - p_t(i,j) - do n=1,5 ! T, S and p are linearly interpolated in the vertical. - p5(n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j) - S5(n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j) - T5(n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j) + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + do n=1,5 ! T, S and p are linearly interpolated in the vertical. + p5(i*5+n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j) + S5(i*5+n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j) + T5(i*5+n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) - - ! Use Boole's rule to estimate the interface height anomaly change. - alpha_anom = C1_90*((7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4))) + 12.0*a5(3)) - dza(i,j) = dp*alpha_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the interface height anomaly. - if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & - (alpha_anom - C1_90*(16.0*(a5(4)-a5(2)) + 7.0*(a5(5)-a5(1))) ) - enddo ; enddo + call calculate_spec_vol(T5, S5, p5, a5, EOS, EOSdom_h5, spv_ref=alpha_ref) + do i=Isq,Ieq+1 + ! Use Boole's rule to estimate the interface height anomaly change. + dp = p_b(i,j) - p_t(i,j) + alpha_anom = C1_90*((7.0*(a5(i*5+1)+a5(i*5+5)) + 32.0*(a5(i*5+2)+a5(i*5+4))) + 12.0*a5(i*5+3)) + dza(i,j) = dp*alpha_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the interface height anomaly. + if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & + (alpha_anom - C1_90*(16.0*(a5(i*5+4)-a5(i*5+2)) + 7.0*(a5(i*5+5)-a5(i*5+1))) ) + enddo + enddo ! 2. Compute horizontal integrals in the x direction - if (present(intx_dza)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. Note: To work in terrain following coordinates we could - ! offset this distance by the layer thickness to replicate other models. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(intx_dza)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. Note: To work in terrain following coordinates we could + ! offset this distance by the layer thickness to replicate other models. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - P_top = wt_L*p_t(i,j) + wt_R*p_t(i+1,j) - P_bot = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) - T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i+1,j) - T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i+1,j) - S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i+1,j) - S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i+1,j) - dp_90(m) = C1_90*(P_bot - P_top) - - ! Salinity, temperature and pressure with linear interpolation in the vertical. - pos = (m-2)*5 - do n=1,5 - p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot - S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot - T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + P_top = wt_L*p_t(i,j) + wt_R*p_t(i+1,j) + P_bot = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) + T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i+1,j) + T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i+1,j) + S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i+1,j) + S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i+1,j) + dp_90(m,I) = C1_90*(P_bot - P_top) + + ! Salinity, temperature and pressure with linear interpolation in the vertical. + pos = i*15+(m-2)*5 + do n=1,5 + p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + enddo enddo enddo - call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T15, S15, p15, a15, EOS, EOSdom_q15, spv_ref=alpha_ref) - intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) - do m=2,4 - ! Use Boole's rule to estimate the interface height anomaly change. - ! The integrals at the ends of the segment are already known. - pos = (m-2)*5 - intp(m) = dp_90(m)*((7.0*(a15(pos+1)+a15(pos+5)) + & - 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + do I=Isq,Ieq + intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) + do m=2,4 + ! Use Boole's rule to estimate the interface height anomaly change. + ! The integrals at the ends of the segment are already known. + pos = I*15+(m-2)*5 + intp(m) = dp_90(m,I)*((7.0*(a15(pos+1)+a15(pos+5)) + & + 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + intx_dza(I,j) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - intx_dza(I,j) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif ! 3. Compute horizontal integrals in the y direction - if (present(inty_dza)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, like thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(inty_dza)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, like thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - P_top = wt_L*p_t(i,j) + wt_R*p_t(i,j+1) - P_bot = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) - T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i,j+1) - T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i,j+1) - S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i,j+1) - S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i,j+1) - dp_90(m) = C1_90*(P_bot - P_top) - - ! Salinity, temperature and pressure with linear interpolation in the vertical. - pos = (m-2)*5 - do n=1,5 - p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot - S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot - T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + P_top = wt_L*p_t(i,j) + wt_R*p_t(i,j+1) + P_bot = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) + T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i,j+1) + T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i,j+1) + S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i,j+1) + S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i,j+1) + dp_90(m,i) = C1_90*(P_bot - P_top) + + ! Salinity, temperature and pressure with linear interpolation in the vertical. + pos = i*15+(m-2)*5 + do n=1,5 + p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + enddo enddo enddo - call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + a15(15*HI%isc+1:), EOS, EOSdom_h15, spv_ref=alpha_ref) - intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) - do m=2,4 - ! Use Boole's rule to estimate the interface height anomaly change. - ! The integrals at the ends of the segment are already known. - pos = (m-2)*5 - intp(m) = dp_90(m) * ((7.0*(a15(pos+1)+a15(pos+5)) + & - 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + do i=HI%isc,HI%iec + intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) + do m=2,4 + ! Use Boole's rule to estimate the interface height anomaly change. + ! The integrals at the ends of the segment are already known. + pos = i*15+(m-2)*5 + intp(m) = dp_90(m,i) * ((7.0*(a15(pos+1)+a15(pos+5)) + & + 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + inty_dza(i,J) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - inty_dza(i,J) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_spec_vol_dp_generic_plm