Author and date: Hanno Sandvik, 24 May 2023
This R code can be used to run the analyses of the Norwegian Red List for ecosystems and habitat types described in the paper “Metrics for quantifying how much different threats contribute to red lists of species and ecosystems” (Sandvik & Pedersen 2023).
Contents:
- Variables
- Constants
- Preliminaries
- Read and check the data
- Prepare the data frame for analyses
- Summarise the data
- Analysis of threat factors
- Figure 4
- Disaggregation
The following variables can be used to adjust the output.
(1) Name of the data file. The default downloads the Norwegian Red
List data for ecosystems from
doi:10.5281/zenodo.7893216. To
analyse other Red Lists, use url = ""
and provide the file name of the
dataset as file
(including file path, if needed).
url <- "https://zenodo.org/record/7893216/files/ecosyst.csv"
file <- "ecosyst.csv"
(2) Handling of DD systems. Decides whether Data Deficient ecosystems are excluded (if FALSE) or randomly assigned to other Red List Categories (if TRUE).
includeDD <- TRUE
(3) Handling of unknown threats. Decides whether (if TRUE) or not (if FALSE) unknown threat factors should be inferred from the distribution of the known threat factors.
inferThreats <- FALSE
(4) Disaggregation. Decides whether ecosystem major types should be disaggregated into their minor types.
disaggregate <- FALSE
(5) Weighting schemes. Defines the weighting scheme for the Red List Index and the Expected Loss of Species. (Defaults to “equal-steps” for RLI and the thresholds of the IUCN Red List Criterion E for ELS; other options are the IUCN Red List Criteria “A1”, “A2”, “B1”, “B2”, “C1”, “C2”, “D1” and “D2” as well as “Ev2”, “Ev3”.)
weightingRLI <- "equal-steps"
weightingELS <- "E"
(6) Column names. Column names in the dataset which contain Red List Categories, threat factors, reasons for category change, and generation time, respectively. The three former ones need to be followed by the year of assessment (for change, the year of the second of the two relevant assessments). So if the column name containing Red List Categories is not named something like “Categ18” or “Categ2018”, this needs to be adjusted here!
Categ <- "Categ"
Threat <- "Threat"
Change <- "Change"
GTime <- "GenTime"
Note the following formatting requirements of these columns:
- Red List Categories in the “Categ” column must match with the constants specified (see next section).
- Threat columns must contain text strings specifying threat. Each threat must be described as a sequence of (abbreviations for) (i) threat factor, (ii) timing, (iii) scope and (iv) severity, which are separated by colons; different threats to the same ecosystem are separated by commas.
- Change columns are needed only if the dataset contains results from more than one Red List. It must contain no more than one reason for change in Red List Category per ecosystem.
- Generation time is not applicable to ecosystems. However,
GTime
needs to be specified for the functions to work correctly.
(7) Abbreviations used. What are the abbreviations used for unknown
threats and for real status change? The four “unknowns” can occur in the
Threat
column(s), see previous item. (Defaults to the abbreviations
used in the dataset analysed in the paper. May need to be adjusted for
other datasets.) The latter is only needed if Red List Categories are to
be “back-cast” to earlier Red List assessments. It must occur in the
Change
column(s), see previous item.
unknownThreat <- "unknownf"
unknownTiming <- "unknownt"
unknownScope <- "unknownp"
unknownSeverity <- "unknownd"
realChange <- "realchng"
(8) Timings to include. What is (are) the abbreviation(s) of the timing categories that should be considered (defaults to “ongoing”).
inclTiming <- "ongoingt"
If all threats are to be included, irrespective of timing, this would
need to be replaced (in terms of the abbreviations used in this dataset)
by
inclTiming <- c("onlypast", "suspendd", "ongoing", "onlyfutu", "unknownt")
.
(9) Calculation of threat scores. Decides whether threat scores are based on the product of scope and severity (if TRUE) or on severity alone (if FALSE).
useScope <- FALSE
IUCN now
states
that severities should describe the decline within the scope of a
particular threat. If this definition has been followed,
useScope
should be TRUE
. Previously, however, the definition
of severity was ambiguous. In the Norwegian Red List analysed here,
severity was used to describe the decline of the entire area. The
default value (FALSE) assumes the latter situation, in which severity
should not be multiplied with score. (See here for some
more detail.)
(10) Number of simulations. NB: the default takes a while. For
exploration purposes, nsim <- 1000
will suffice.
nsim <- 100000
(11) Re-create published estimates? Decides whether the estimation of confidence intervals should be re-created exactly as published (if TRUE) or be based on novel random numbers (if FALSE).
re.create <- TRUE
(12) File names of figures. If you want to display the figures on screen, keep the default. If you want to create PNG files, specify the file names (including paths).
fig4 <- ""
figS4 <- ""
Constants should not normally need to be changed. Changing them entails modifying some underlying assumptions.
(1) Red List Categories and their weights, extinction probabilities etc. This data frame needs to contain all Red List Categories used in the Red List analysed of ecosystems that have been evaluated:
RLcateg <- data.frame(
name = c( "LC", "NT", "VU", "EN", "CR", "CO"),
LC = c( TRUE, FALSE, FALSE, FALSE, FALSE, FALSE),
EX = c( FALSE, FALSE, FALSE, FALSE, FALSE, TRUE),
wt = c( 0, 1, 2, 3, 4, 5),
lowP = c( 0.00, 0.05, 0.10, 0.20, 0.50, 1.00),
uppP = c( 0.00, 0.10, 0.20, 0.50, 1.00, 1.00),
lowT = c( 100, 100, 100, 50, 50, 50),
uppT = c( 100, 100, 50, 50, 50, 50),
lowG = c( 0, 0, 0, 0, 0, 0),
uppG = c( 0, 0, 0, 0, 0, 0),
lowA1 = c( 0.00, 0.20, 0.30, 0.50, 0.80, 1.00),
uppA1 = c( 0.00, 0.30, 0.50, 0.80, 1.00, 1.00),
lowA2 = c( 0.00, 0.20, 0.30, 0.50, 0.80, 1.00),
uppA2 = c( 0.00, 0.30, 0.50, 0.80, 1.00, 1.00),
lowB1 = c( 55000, 55000, 50000, 20000, 2000, 0),
uppB1 = c( 55000, 50000, 20000, 2000, 0, 0),
lowB2 = c( 5500, 5500, 5000, 2000, 200, 0),
uppB2 = c( 5500, 5000, 2000, 200, 0, 0),
lowC = c( 0.00, 0.15, 0.24, 0.40, 0.64, 1.00),
uppC = c( 0.00, 0.24, 0.40, 0.64, 1.00, 1.00),
lowD = c( 0.00, 0.15, 0.24, 0.40, 0.64, 1.00),
uppD = c( 0.00, 0.24, 0.40, 0.64, 1.00, 1.00),
distr = c("unif", "unif", "unif", "unif", "decr", "unif"),
beta = c( NA, NA, NA, NA, NA, NA),
stringsAsFactors = FALSE
)
The values in the dataframe are based on IUCN (2016), Bland et al. (2017) and the Norwegian guidance document (Artsdatabanken 2018). The columns have the following meanings:
- The column “LC” identifies the Red List Category “Least Concern” (defaults to IUCN’s abbreviation).
- The column “EX” identified the Red List Categories for ecosystem collapse (defaults to IUCN’s abbreviations).
- The column “wt” provides the Red List Weight of the Category (defaults to equal-steps weighting).
- The columns “lowP” and “uppP” provide the lower and upper threshold values for extinction probability according to IUCN Red List Criterion E.
- The columns “lowT” and “uppT” provide the lower and upper threshold values for extinction time frames in years according to IUCN Red List Criterion E.
- The columns “lowG” and “uppG” are not used for ecosystems but should contain zeros.
- The columns “lowA1” and “uppA1” provide the lower and upper threshold values for reduction in geographic distribution according to IUCN Red List Criterion A1.
- The columns “lowA2” and “uppA2” provide the lower and upper threshold values for reduction in geographic distribution according to IUCN Red List Criterion A2. (Note that A3 is not implemented.)
- The columns “lowB1” and “uppB1” provide the lower and upper threshold values for extents of occurrence (EOO) according to IUCN Red List Criterion B1.
- The columns “lowB2” and “uppB2” provide the lower and upper threshold values for areas of occupancy (AOO) according to IUCN Red List Criterion B2.
- The columns “lowC” and “uppC” provide the lower and upper threshold values for environmental degradation according to IUCN Red List Criteria C1 and C2 (estimated as the product of extent and relative severity over a 50-year period; note that C3 is not implemented).
- The columns “lowD” and “uppD” provide the lower and upper threshold values for disruption of biotic processes or interactions according to IUCN Red List Criteria D1 and D2 (estimated as the product of extent and relative severity over a 50-year period; note that D3 is not implemented).
- The column “distr” provides the distribution of extinction probabilities within the interval.
- The column “beta” is not currently needed (but may be needed if “distr” is changed).
(2) Special Red List Categories. What are the abbreviations used for data-deficient ecosystems and for ecosustems that have not been evaluated? (Defaults to IUCN’s abbreviations.)
DD <- "DD"
notEval <- c("NA", "NE")
(3) Downlisting. What is added to a Red List Category to indicate downlisting? (Defaults to the degree symbol.) If a Red List Category if followed by this symbol, it is assumed to have been downlisted by one Red List Category. (This is not relevant for ecosystems but included for compatibility.)
downlistSymbol <- "\u00b0" # degree symbol in unicode
downlistSymbol <- iconv(downlistSymbol, Encoding(downlistSymbol), "latin1")
(4) Scopes and their threshold values. This data frame needs to contain all scope classes of threats used in the Red List analysed. Two versions of the data frame are provided, one for analysis of the Norwegian Red List data (the default) and one with the scope classes defined by IUCN (2023). The default is to use the Norwegian scope classes.
ScopeNorway <- data.frame(
name = c("neglarea", "minority", "majority", "wholarea", "unknownp"),
lower = c( 0.00, 0.05, 0.50, 0.90, 0.00),
upper = c( 0.05, 0.50, 0.90, 1.00, 1.00),
distr = c( "unif", "unif", "unif", "unif", "beta"),
beta = c( NA, NA, NA, NA, 2),
stringsAsFactors = FALSE
)
ScopeIUCN <- data.frame(
name = c("minority", "majority", "wholarea", "unknownp"),
lower = c( 0.00, 0.50, 0.90, 0.00),
upper = c( 0.50, 0.90, 1.00, 1.00),
distr = c( "unif", "unif", "unif", "beta"),
beta = c( NA, NA, NA, 2),
stringsAsFactors = FALSE
)
Scope <- ScopeNorway
Values are the proportions of the total area affected by a threat (Artsdatabanken 2018; cf. IUCN 2023). The columns have the following meanings:
- The column “name” contains the abbreviations used for the scope classes.
- The column “lower” contains the lower limit of the respective interval.
- The column “upper” contains the upper limit of the respective interval.
- The column “distr” contains the distribution of values within the respective interval (possible values: “unif”, “incr”, “decr”, “beta”).
- The column “beta” contains the beta parameter of a Beta distribution
(a numeric values if
distr == "beta"
, andNA
otherwise).
(5) Severities and their threshold values. This data frame needs to contain all severity classes of threats used in the Red List analysed. Two versions of the data frame are provided, one for analysis of the Norwegian Red List data (the default) and one with the severity classes defined by IUCN (2023). The default is to use the Norwegian severity classes.
SeverityNorway <- data.frame(
name = c("negldecl", "slowdecl", "rapidecl", "unknownd"),
lower = c( 0.00, 0.02, 0.20, 0.00),
upper = c( 0.02, 0.20, 1.00, 1.00),
distr = c( "incr", "unif", "decr", "beta"),
beta = c( NA, NA, NA, 20),
stringsAsFactors = FALSE
)
SeverityIUCN <- data.frame(
name = c("nodeclin", "negldecl", "slowdecl", "rapidecl", "veryrapd", "fluctuat", "unknownd"),
lower = c( 0.00, 0.00, 0.02, 0.20, 0.30, 0.02, 0.00),
upper = c( 0.00, 0.02, 0.20, 0.30, 1.00, 0.20, 1.00),
distr = c( "unif", "unif", "unif", "unif", "decr", "unif", "beta"),
beta = c( NA, NA, NA, NA, NA, NA, 20),
stringsAsFactors = FALSE
)
Severity <- SeverityNorway
Values correspond to the declines in area of occupancy over 50 years caused by a threat (Artsdatabanken 2020; cf. IUCN 2023). The columns have the following meanings:
- The column “name” contains the abbreviations used for the severity classes.
- The column “lower” contains the lower limit of the respective interval.
- The column “upper” contains the upper limit of the respective interval.
- The column “distr” contains the distribution of values within the respective interval (possible values: “unif”, “incr”, “decr”, “beta”; see here for the rationale).
- The column “beta” contains the beta parameter of a Beta distribution
(a numeric values if
distr == "beta"
, andNA
otherwise).
(6) Time frame for the Expected Loss of Systems, in years (defaults to 50 years).
TimeFrame <- 50
Load the set of functions belonging to this repository:
eval(parse(text = readLines("function.R")))
Define further required variables, based on the variables and constants specified above:
LC <- RLcateg$name[RLcateg$LC] # abbreviation(s) for systems of Least Concern
extinct <- RLcateg$name[RLcateg$EX] # abbreviation(s) for collapsed systems
LC.EX <- RLcateg$name # Red List Categories of evaluated systems
RedListCat <- c(LC.EX, DD, notEval) # all Red List Categories
Read the dataset “Norwegian Red List for ecosystems and habitat types”:
{
foundFile <- FALSE
if (file.exists(file)) {
foundFile <- TRUE
} else {
if (nchar(url)) {
downl <- try(download.file(url, file))
foundFile <- !inherits(downl, "try-error")
}
}
if (foundFile) {
RL <- read.csv2(file, as.is=TRUE, dec=".", na.strings="n/a", encoding="latin1")
} else {
cat("The datafile was not found.\n")
}
}
Check whether the data are as expected:
{
usedCategories <- checkRL(RL)
years <- identifyYears(RL)
cat("\nYears included in this dataset:\n")
print(years)
threats <- identifyThreats(RL)
cat("\nThreat factors reported in this dataset:\n")
print(threats)
}
## Red List Categories are OK.
## WARNING: The threat factor "unknownf" does not occur in the dataset!
## WARNING: The dataset lacks a column containing generation times!
##
## One or more problem(s) were found that may preclude further analyses!
##
## Years included in this dataset:
## [1] 18
##
## Threat factors reported in this dataset:
## [1] "alienspe" "climatec" "disturba" "huntgath" "landusec" "natcatas" "nativesp" "otherthr" "pollutio" "unknownf"
We can ignore these two warnings in this case.
Ensure that RedListCat
and LC.EX
only contain categories that are
actually used:
RedListCat <- RedListCat %A% usedCategories
LC.EX <- LC.EX %A% usedCategories
(1) Reverse downlisting:
RL <- uplist(RL)
We wouldn’t have needed this step, since the dataset does not contain downlisted Red List Categories.
(2) Back-cast knowledge from the most recent Red List to earlier ones:
RL <- backCast(RL)
## NB: There was no earlier Red List to back-cast to!
That’s correct, so we wouldn’t have needed this step either.
(3) Calculate collapse probabilites for all ecosystems:
RL <- calcLoss(RL)
## WARNING: All generation times were assumed to be < 1 year.
This warning does not have to bother us when we are analysing Red Lists of ecosystems.
(4) Add columns for all threat factors:
RL <- addThreats(RL)
Summarise the Red List:
tab <- summariseRL(RL, exclude = NULL)
## N LC NT VU EN CR DD NE RLI Cum.ELS50
## RL18 229 103 34 40 22 4 7 19 0.8068966 16.957
Estimate ΔRLI:
DRLI <- DeltaRLI(RL)
## DeltaRLI can only be estimated if there are at least two Red Lists.
Estimate δRLI and ELS50:
drli <- dRLI(RL)
print(drli)
## $dRLI
## RL18
## alienspe 8.252927e-03
## climatec 3.939611e-02
## disturba 1.848226e-02
## huntgath 1.752848e-05
## landusec 8.987071e-02
## natcatas 2.100840e-04
## nativesp 6.039532e-03
## otherthr 8.359117e-03
## pollutio 1.495465e-02
## unknownf 7.520525e-03
##
## $ELS50
## RL18
## alienspe 0.7271902493
## climatec 3.2254923250
## disturba 1.8227486794
## huntgath 0.0006441718
## landusec 8.2794577213
## natcatas 0.0137867647
## nativesp 0.5274527941
## otherthr 0.5385235062
## pollutio 1.3487037882
## unknownf 0.4730000000
Confidence intervals on RLI:
print(confidenceRLI(RL, nsim, "Categ18"))
## 2.5% 25% 50% 75% 97.5%
## 0.8009524 0.8047619 0.8066667 0.8085714 0.8123810
Confidence intervals on ΔRLI, δRLI and ELS50:
results <- simulateDRLI(RL, nsim)
##
##
## Confidence intervals for the cumulative dRLI in 18:
## 2.5% 25% 50% 75% 97.5%
## 0.1876190 0.1914286 0.1933333 0.1952381 0.1990476
##
##
## Confidence intervals for the threat-wise dRLIs in 18:
## alienspe climatec disturba huntgath landusec natcatas nativesp otherthr pollutio unknownf
## 2.5% 0.006758343 0.03656412 0.01675931 6.795494e-06 0.08584420 7.156479e-05 0.005126745 0.006181287 0.01228131 0.004761905
## 25% 0.007687161 0.03829361 0.01794484 1.435925e-05 0.08836223 1.575950e-04 0.005738308 0.007383997 0.01391030 0.005714286
## 50% 0.008198793 0.03922720 0.01857568 1.809884e-05 0.08982168 2.262735e-04 0.006108323 0.008218062 0.01481735 0.007619048
## 75% 0.008730884 0.04017614 0.01921618 2.160334e-05 0.09136730 3.189405e-04 0.006474419 0.009310056 0.01576807 0.008571429
## 97.5% 0.009767632 0.04203056 0.02042585 2.976382e-05 0.09443842 5.457735e-04 0.007113675 0.011246090 0.01767791 0.011428571
##
##
## Confidence intervals for the cumulative ELS50 in 18:
## 2.5% 25% 50% 75% 97.5%
## 15.75697 16.51144 16.93482 17.37599 18.27161
##
##
## Confidence intervals for the threat-wise ELS50 in 18:
## alienspe climatec disturba huntgath landusec natcatas nativesp otherthr pollutio unknownf
## 2.5% 0.5151928 2.739900 1.507216 0.0002192553 7.465525 0.003455028 0.3568235 0.3180646 1.031892 0.1805618
## 25% 0.6450533 3.040555 1.707238 0.0004650567 7.985247 0.008799774 0.4549667 0.4310763 1.219050 0.2890853
## 50% 0.7202112 3.207417 1.824467 0.0006317647 8.270442 0.013913733 0.5306041 0.5092614 1.329281 0.4019564
## 75% 0.7972969 3.377408 1.946892 0.0008328888 8.565619 0.021298477 0.6052429 0.6120342 1.449206 0.6085508
## 97.5% 0.9576001 3.713596 2.192874 0.0012638595 9.177311 0.042441397 0.7098457 0.9837090 1.727132 1.0811737
The following script recreates Figure 4.
Simplify the data by collapsing minor threats:
drli. <- drli$dRLI[, 1]
ELS. <- drli$ELS50[,1]
drli.["otherthr"] <- sum(drli.[c("alienspe", "huntgath", "natcatas",
"nativesp", "otherthr", "unknownf")])
ELS. ["otherthr"] <- sum(ELS. [c("alienspe", "huntgath", "natcatas",
"nativesp", "otherthr", "unknownf")])
drli. <- drli.[-which(names(drli.) %in% c("alienspe", "huntgath", "natcatas",
"nativesp", "unknownf"))]
ELS. <- ELS. [-which(names(ELS.) %in% c("alienspe", "huntgath", "natcatas",
"nativesp", "unknownf"))]
ELS. <- ELS.[order(drli., decreasing=T)]
drli. <- drli.[order(drli., decreasing=T)]
Plot a graph for δRLI:
{
xl <- c(6, 30)
yl <- c(0.79, 1.02)
if (nchar(fig4)) {
png(fig4, 1500, 1200, res=180)
xl <- c(7, 24)
yl <- c(0.795, 1.01)
}
par(mai=c(0.06, 0.96, 0.06, 0.06), family="sans")
plot(0, 0, xlim=xl, ylim=yl, xaxs="i", yaxs="i", xaxt="n", yaxt="n",
xlab="", ylab="Red List Index", bty="n", cex.axis=1.2, cex.lab=1.8)
axis(2, seq(0.7, 1, 0.1), F, T, lwd=1.5, lend=1)
axis(2, seq(0.7, 1, 0.05), T, F, cex.axis=1.2, lwd=1.5, lend=1)
axis(2, seq(0.7, 1, 0.01), F, T, tcl=-0.25, lwd=1.5, lend=1)
rect(11, 0, 14, 1, col=grey(0.96))
for (i in 5:1) {
rect(11, 1 - sum(drli.[i:1]), 14, 1, lwd=1.2, col=grey(0.96 - i * 0.12))
}
rect(11, 0, 14, 1, lwd=2.4, col=NA)
x1 <- 7.4; x2 <- 10.6
rli <- RLI(RL$Categ18)
lines(c(x1, x2), rep(rli, 2), lwd=2.4)
lines(c(x1, x2), rep(1, 2), lwd=2.4)
polygon(x1 + c(-0.2, 0.1, 0.1), rli + c(0, 0.002, -0.002), col="black")
polygon(x2 + c( 0.2, -0.1, -0.1), rli + c(0, 0.002, -0.002), col="black")
polygon(x1 + c(-0.2, 0.1, 0.1), 1 + c(0, 0.002, -0.002), col="black")
polygon(x2 + c( 0.2, -0.1, -0.1), 1 + c(0, 0.002, -0.002), col="black")
text(mean(c(x1, x2)), 1, "reference value", pos=3, cex=1.2)
text(mean(c(x1, x2)), 1, "1.0000", pos=1, cex=1.2)
text(mean(c(x1, x2)), rli, "RLI 2018", pos=3, cex=1.2)
text(mean(c(x1, x2)), rli, "0.8069", pos=1, cex=1.2)
text(15, 1 - 0.5 * sum( 0) - 0.5 * sum(drli.[1:1]),
expression(paste("Land-use change (", bold("8.3"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:1]) - 0.5 * sum(drli.[1:2]),
expression(paste("Climate change (", bold("3.2"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:2]) - 0.5 * sum(drli.[1:3]),
expression(paste("Other threats (", bold("2.3"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:3]) - 0.5 * sum(drli.[1:4]),
expression(paste("Human disturbance (", bold("1.8"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:4]) - 0.5 * sum(drli.[1:5]),
expression(paste("Pollution (", bold("1.4"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:5]) - 0.5 * 0.205,
expression(paste(bold("212"), " ecosystems ", italic("not"), " lost")),
pos=4, cex=1.2)
lines(14:15, rep(1 - 0.5 * sum( 0) - 0.5 * sum(drli.[1:1]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:1]) - 0.5 * sum(drli.[1:2]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:2]) - 0.5 * sum(drli.[1:3]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:3]) - 0.5 * sum(drli.[1:4]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:4]) - 0.5 * sum(drli.[1:5]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:5]) - 0.5 * sum( 0.205), 2), lwd=1.2)
if (nchar(fig4)) {
dev.off()
}
}
The ecosystems assessed for the Norwegian Red List are at different levels of the underlying EcoSyst framework. The following analyses show the results obtained when major ecosystem types are disaggregated into their subordinated minor ecosystem types:
{
RL. <- disaggrMajorTypes(RL, minor = "MnTypes", type = "TypeCode",
id = "FileID", categ = "Categ18.18")
RL. <- calcLoss(RL.)
RL. <- addThreats(RL.)
cat("Summary table:\n")
tab <- summariseRL(RL., exclude = NULL)
drli. <- dRLI(RL.)
cat("\ndRLI after disaggregation into minor types:\n")
print(drli.$dRLI)
cat("\nELS50 after disaggregation into minor types:\n")
print(drli.$ELS50)
}
## Summary table:
## N LC NT VU EN CR DD NE RLI Cum.ELS50
## RL18 808 506 70 124 35 4 21 48 0.8811908 33.624
##
## dRLI after disaggregation into minor types:
## RL18
## alienspe 7.208655e-03
## climatec 2.937604e-02
## disturba 6.048705e-03
## huntgath 6.780756e-05
## landusec 5.692505e-02
## natcatas 5.804954e-05
## nativesp 2.195134e-03
## otherthr 3.264632e-03
## pollutio 9.790767e-03
## unknownf 3.874368e-03
##
## ELS50 after disaggregation into minor types:
## RL18
## alienspe 2.250704490
## climatec 7.570356533
## disturba 2.005463101
## huntgath 0.009018405
## landusec 16.585557519
## natcatas 0.013786765
## nativesp 0.652452794
## otherthr 0.751523506
## pollutio 2.913136887
## unknownf 0.872000000
The following script recreates Appendix S10 (Figure S4).
Simplify the data by collapsing minor threats:
ELS. <- drli.$ELS50[,1]
drli. <- drli.$dRLI[, 1]
ELS. ["otherthr"] <- sum(ELS. [c("alienspe", "huntgath", "natcatas",
"nativesp", "otherthr", "unknownf")])
drli.["otherthr"] <- sum(drli.[c("alienspe", "huntgath", "natcatas",
"nativesp", "otherthr", "unknownf")])
ELS. <- ELS. [-which(names(ELS.) %in% c("alienspe", "huntgath", "natcatas",
"nativesp", "unknownf"))]
drli. <- drli.[-which(names(drli.) %in% c("alienspe", "huntgath", "natcatas",
"nativesp", "unknownf"))]
ELS. <- ELS. [c(3, 1, 4, 2, 5)]
drli. <- drli.[c(3, 1, 4, 2, 5)]
Plot a graph for δRLI:
{
xl <- c(6.5, 26.5)
yl <- c(0.792, 1.02)
if (nchar(figS4)) {
png("c:\\art\\threats\\figS4.png", 1500, 1200, res=180)
xl <- c(7, 24)
yl <- c(0.795, 1.01)
}
par(mai=c(0.06, 0.96, 0.06, 0.06), family="sans")
plot(0, 0, xlim=xl, ylim=yl,
xaxs="i", yaxs="i", xaxt="n", yaxt="n",
xlab="", ylab="Red List Index", bty="n", cex.axis=1.2, cex.lab=1.8)
axis(2, seq(0.7, 1, 0.10), F, T, lwd=1.5, lend=1)
axis(2, seq(0.7, 1, 0.05), T, F, cex.axis=1.2, lwd=1.5, lend=1)
axis(2, seq(0.7, 1, 0.01), F, T, tcl=-0.25, lwd=1.5, lend=1)
rect(11, 0, 14, 1, col=grey(0.96))
for (i in 5:1) {
rect(11, 1 - sum(drli.[i:1]), 14, 1, lwd=1.2, col=grey(0.96 - i * 0.12))
}
rect(11, 0, 14, 1, lwd=2.4, col=NA)
x1 <- 7.4; x2 <- 10.6
rli <- RLI(RL.$Categ18.18)
lines(c(x1, x2), rep(rli, 2), lwd=2.4)
lines(c(x1, x2), rep(1, 2), lwd=2.4)
polygon(x1 + c(-0.2, 0.1, 0.1), rli + c(0, 0.002, -0.002), col="black")
polygon(x2 + c( 0.2, -0.1, -0.1), rli + c(0, 0.002, -0.002), col="black")
polygon(x1 + c(-0.2, 0.1, 0.1), 1 + c(0, 0.002, -0.002), col="black")
polygon(x2 + c( 0.2, -0.1, -0.1), 1 + c(0, 0.002, -0.002), col="black")
text(mean(c(x1, x2)), 1, "reference value", pos=3, cex=1.2)
text(mean(c(x1, x2)), 1, "1.0000", pos=1, cex=1.2)
text(mean(c(x1, x2)), rli, "RLI 2018", pos=3, cex=1.2)
text(mean(c(x1, x2)), rli, "0.8812", pos=1, cex=1.2)
text(15, 1 - 0.5 * sum( 0) - 0.5 * sum(drli.[1:1]),
expression(paste("Land-use change (", bold("17"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:1]) - 0.5 * sum(drli.[1:2]),
expression(paste("Climate change (", bold("8"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:2]) - 0.5 * sum(drli.[1:3]),
expression(paste("Other threats (", bold("4"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:3]) - 0.5 * sum(drli.[1:4]),
expression(paste("Human disturbance (", bold("2"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:4]) - 0.5 * sum(drli.[1:5]),
expression(paste("Pollution (", bold("3"), " ecosystems lost)")),
pos=4, cex=1.2)
text(15, 1 - 0.5 * sum(drli.[1:5]) - 0.5 * 0.205,
expression(paste(bold("774"), " ecosystems ", italic("not"), " lost")),
pos=4, cex=1.2)
lines(14:15, rep(1 - 0.5 * sum( 0) - 0.5 * sum(drli.[1:1]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:1]) - 0.5 * sum(drli.[1:2]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:2]) - 0.5 * sum(drli.[1:3]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:3]) - 0.5 * sum(drli.[1:4]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:4]) - 0.5 * sum(drli.[1:5]), 2), lwd=1.2)
lines(14:15, rep(1 - 0.5 * sum(drli.[1:5]) - 0.5 * sum( 0.205), 2), lwd=1.2)
if (nchar(figS4)) {
dev.off()
}
}