-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
109 lines (90 loc) · 2.96 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
import argparse
import os
import random
import numpy as np
import torch
from habitat import logger
from habitat_baselines.common.baseline_registry import baseline_registry
import habitat_extensions # noqa: F401
import vienna # noqa: F401
from vienna.config.default import get_config
from vienna.nonlearning_agents import (
evaluate_agent,
nonlearning_inference,
)
import sys
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--run-type",
choices=["train", "eval", "inference"],
required=True,
help="run type of the experiment (train, eval, inference)",
)
parser.add_argument(
"--exp-config",
type=str,
required=True,
help="path to config yaml containing info about experiment",
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="Modify config options from command line",
)
args = parser.parse_args()
run_exp(**vars(args))
def run_exp(exp_config: str, run_type: str, opts=None) -> None:
"""Runs experiment given mode and config
Args:
exp_config: path to config file.
run_type: "train" or "eval.
opts: list of strings of additional config options.
"""
config = get_config(exp_config, opts)
gpus = ''
if run_type == 'train':
for i, g in enumerate(config.VISIBLE_GPUS):
gpus += '{:d}'.format(g)
if i != len(config.VISIBLE_GPUS):
gpus += ','
else:
for i, g in enumerate(config.EVAL.VISIBLE_GPUS):
gpus += '{:d}'.format(g)
if i != len(config.EVAL.VISIBLE_GPUS):
gpus += ','
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
# os.environ['MASTER_PORT'] = str(config.MASTER_PORT)
logger.info(f"config: {config}")
logdir = "/".join(config.LOG_FILE.split("/")[:-1])
if logdir:
os.makedirs(logdir, exist_ok=True)
logger.add_filehandler(config.LOG_FILE)
random.seed(config.TASK_CONFIG.SEED)
np.random.seed(config.TASK_CONFIG.SEED)
torch.manual_seed(config.TASK_CONFIG.SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
if torch.cuda.is_available():
torch.set_num_threads(1)
if run_type == "eval":
torch.backends.cudnn.deterministic = True
if config.EVAL.EVAL_NONLEARNING:
evaluate_agent(config)
return
if run_type == "inference" and config.INFERENCE.INFERENCE_NONLEARNING:
nonlearning_inference(config)
return
trainer_init = baseline_registry.get_trainer(config.TRAINER_NAME)
assert trainer_init is not None, f"{config.TRAINER_NAME} is not supported"
trainer = trainer_init(config)
if run_type == "train":
trainer.train()
elif run_type == "eval":
trainer.eval()
elif run_type == "inference":
trainer.inference()
if __name__ == "__main__":
main()