-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
84 lines (70 loc) · 2.88 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Algorithm Visualizer</title>
<link rel="stylesheet" href="./css/common_style.css">
<link rel="stylesheet" href="./css/algo_style.css">
</head>
<body>
<header>
<h1>
Algorithm Visualizer
</h1>
</header>
<div class='container'>
<a href="./sort.html">
<div class='algo' id='sort'>
<div class="position">Sorting Algorithm</div>
<img src="./img/sort.png" alt="" class="algo-img">
<div class="content">
<h3 class="content_title">Sorting Algorithm Visualizer</h3>
<p class="about">
A Sorting Algorithm is used to rearrange a
given array or list of elements according to a
comparison operator on the elements. The comparison operator
is used to decide the new order of elements in the respective data structure.
</p>
</div>
</div>
</a>
<a href="./sudoku.html">
<div class='algo' id='sudoku'>
<div class="position">Sudoku</div>
<img src="./img/sudoku.png" alt="" class="algo-img">
<div class="content">
<h3 class="content_title">Sudoku Algorithm Visualizer</h3>
<p class="about">
Sudoku is one of the most popular puzzle games of all time.
The goal of Sudoku is to fill a 9×9 grid with numbers so that each row,
column and 3×3 section contain all of the digits between 1 and 9.
</p>
</div>
</div>
</a>
<a href="./soe.html">
<div class='algo' id='soe'>
<div class="position">Sieve of Eratosthenes</div>
<img src="./img/soe.png" alt="" class="algo-img">
<div class="content">
<h3 class="content_title">Sieve of Eratosthenes Visualizer</h3>
<p class="about">
The sieve of Eratosthenes is one of the most efficient ways
to find all primes smaller than n when n is smaller than 10 million or so
</p>
</div>
</div>
</a>
</div>
<footer>
<p>
Made with ❤️ by Harsh
<img src="img/git.png" />
<a href="https://github.com/Harsh-1000"
rel="noopener noreferrer" target="_blank">harsh-1000</a>
</p>
</footer>
</body>
</html>