-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathQuasi_Isomorphic_Binary_Trees.cpp
164 lines (142 loc) · 4.96 KB
/
Quasi_Isomorphic_Binary_Trees.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
Introduction
Given two Binary Trees , Check whether they are quasi isomorphic or not.
Two trees say Tree1 and Tree2 are quasi-isomorphic if Tree1 can be transformed into Tree2 by
swapping the left and right children of some of the nodes of root1 ,structurally.
Data values of node's doesn't matter in this case.
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
*/
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
/* Function to create a node with 'value' as the data stored in it.
Both the children of this new Node are initially null. */
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
/*Interlink all created nodes to create a tree
Use two pointers using int to store indexes
One to keep track of parent node and one for children nodes */
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
/* Connect the two children nodes to parent node
First left and then right nodes */
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Function to check whether given two binary trees are quasi isomorphic
bool AreQuasiIsomorphic(struct Node* root1, struct Node* root2)
{
//If both are null nodes , return true
if(!root1 && !root2)
return true;
//else if one of them is a null node , return false
if(!root1 || !root2)
return false;
/* else recursively find if their subtrees are quasi isomorphic
Left with left and right with right
or left with right and right with left */
return ( AreQuasiIsomorphic(root1->left,root2->left) && AreQuasiIsomorphic(root1->right,root2->right) ) ||
( AreQuasiIsomorphic(root1->left,root2->right) && AreQuasiIsomorphic(root1->right,root2->left) );
}
// Driver code
int main()
{
//Input of 1st Tree
int n1;
cout<<"Enter total no.of nodes of the 1st input Tree ( including NULL nodes ) : ";
cin>>n1;
vector<int>v1(n1);
cout<<"Enter value of each node of the 1 st Tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n1;i++)
{
cin>>v1[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root1=createTree(v1);
//Input of 2nd Tree
int n2;
cout<<"Enter total no.of nodes of the 2nd input Tree ( including NULL nodes ) : ";
cin>>n2;
vector<int>v2(n2);
cout<<"Enter value of each node of the 2nd Tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n2;i++)
{
cin>>v2[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root2=createTree(v2);
//Call the function and print the result
if(AreQuasiIsomorphic(root1,root2))
cout<<"Hence the given two trees are Quasi Isomorphic";
else
cout<<"Hence the given two trees are not Quasi Isomorphic";
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case
Input Binary Tree 1: Input Binary Tree 1:
1 10
/ \ / \
2 3 11 12
/ \ / \ / \ / \
4 NULL NULL 5 NULL 13 14 NULL
Input Format :
Example :
Enter total no.of nodes of the 1st input Tree ( including NULL nodes ) : 7
Enter value of each node of the 1 st Tree in level order ( if a node is NULL , enter -1 ) with spaces
1 2 3 4 -1 -1 5
Enter total no.of nodes of the 2nd input Tree ( including NULL nodes ) : 7
Enter value of each node of the 2nd Tree in level order ( if a node is NULL , enter -1 ) with spaces
10 11 12 -1 13 14 -1
Output Format :
Example : ( Output to the above input example )
Hence the given two trees are Quasi Isomorphic
Time/Space Complexity
Time Complexity : O(n)
Where n is the min of no.of nodes of two trees
Space Complexity : O(h)
Where h is the min of heights of the two trees
*/