-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathVertical_Level_Sums_Of_Binary_Tree.cpp
179 lines (153 loc) · 4.84 KB
/
Vertical_Level_Sums_Of_Binary_Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
Introduction
Given a Binary Tree , Print all vertical level sum's.
It is guaranteed that all node's have unique key values.
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
*/
#include <bits/stdc++.h>
using namespace std;
//Declare Global maps to maintain sum of all vertical levels
map<int,int>verticalLevelSum;
//Define Global variable to keep track leftmost level and right most level
int LeftMostLevel;
int RightMostLevel;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
// Function to create a node with 'value' as the data stored in it.
// Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
//Interlink all created nodes to create a tree
//Use two pointers using int to store indexes
//One to keep track of parent node and one for children nodes
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
//Connect the two children nodes to parent node
//First left and then right nodes
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Utility function to update levels of roots recursively
void UpdateLevelsUtil(struct Node* root,int level)
{
//If root is NULL , return
if(root==NULL)
return;
//else add the root's value to its corresponding level
verticalLevelSum[level]=verticalLevelSum[level]+root->key;
//update LeftMost and RightMost levels
LeftMostLevel=min(LeftMostLevel,level);
RightMostLevel=max(RightMostLevel,level);
//Now recursively update levels of children , by giving corresponding level values
UpdateLevelsUtil(root->left,level-1);
UpdateLevelsUtil(root->right,level+1);
return ;
}
//Function to call utility function and update all levels and corresponding sums
void UpdateLevels(struct Node* root)
{
UpdateLevelsUtil(root,0);
return ;
}
//Function to print level sums of all levels from left to right
void PrintVerticalLevelSums()
{
//print level sums of all levels from left most level to right most level
for(int i=LeftMostLevel;i<=RightMostLevel;i++)
cout<<verticalLevelSum[i]<<" ";
}
// Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
vector<int>v(n);
cout<<"Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
cin>>v[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root=createTree(v);
//initialise the variables as follows
LeftMostLevel=INT_MAX;
RightMostLevel=INT_MIN;
//call the function to update Vertical Levels of all node's
UpdateLevels(root);
//Call the function and print the result
cout<<"Hence vertical Level Sum's from left to right are : ";
PrintVerticalLevelSums();
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case 1
Input Binary Tree :
1
/ \
2 11
/ \ / \
3 5 12 13
/ \ / \ / \ / \
4 NULL 6 7 8 9 NULL 4
Vertically Level wise representation will be as follows :
1
2 11
3 5,12 13
4 6,8,NULL 7,9,NULL 4
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
1 2 11 3 5 12 13 4 -1 6 7 8 9 -1 4
Output Format :
Example : ( Output to the above input example )
Hence vertical Level Sum's from left to right are : 4 3 16 18 27 13 4
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes
Space Complexity : O(w)
Where w is the width of the tree
*/