-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathCalculate_max_sum_of_k_consecutive_elements.cpp
71 lines (64 loc) · 1.77 KB
/
Calculate_max_sum_of_k_consecutive_elements.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
Given an array of N elements and a value K (K <= N) , calculate maximum summation of K consecutive elements in the array.
We can solve this problem by using Sliding Window Technique. This technique will allow us to solve this problem in O(N)
*/
#include <bits/stdc++.h>
using namespace std;
int ar[100009];
int max_sum_by_sliding_window(int ar[] , int N , int K)
{
int sum = 0;
if(N == K)
{
// max_sum will be the sum of all elements of array.
for(int i = 0; i < N; i++)
sum += ar[i];
return sum;
}
if(N > K)
{
// calculate sum of first window of size K
int max_sum = 0, win_sum = 0;
for(int i = 0; i < K; i++)
max_sum += ar[i];
/*calculate sum of remaining windows
by removing elements from first window simultaneously add elements to current window */
win_sum = max_sum;
for(int i = K; i < N; i++)
{
win_sum += (ar[i] - ar[i - K]);
if(win_sum > max_sum)
{
max_sum = win_sum;
}
}
return max_sum;
}
}
int main()
{
int N, K;
cout << "Input array size and value\n";
cin >> N >> K;
for(int i = 0; i < N; i++)
{
cin >> ar[i];
}
int solve = max_sum_by_sliding_window(ar, N , K);
cout << "maximum summation of K consecutive elements in the array is " << solve << endl;
}
/*
Standard Input and Output
1. if N == K
Input array size and value
5 5
1 2 3 4 5
maximum summation of K consecutive elements in the array is 15
2. if N > K
Input array size and value
5 3
5 2 -1 0 3
maximum summation of K consecutive elements in the array is 6
Time Complexity : O(N)
Space Complexity : O(1)
*/