-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
HeapSort.java
130 lines (110 loc) · 3.69 KB
/
HeapSort.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import java.util.*;
class HeapSort {
private static void heapSort(int arr[]) {
int size = arr.length;
System.out.println("Time to make first max heap:");
long startTime = System.nanoTime();
// calling buildHeap() to rearrange along with creating max heap
for(int i = size/2 - 1; i>=0; i--) {
buildHeap(arr, size, i);
}
long stopTime = System.nanoTime();
System.out.println((stopTime - startTime)*0.000000001);
System.out.println("Time to make sort using max heaps and putting largest element in the end:");
startTime = System.nanoTime();
// exchanging and extracting elements one by one from the final heap to sort the array
for(int i = size-1; i>0; i--) {
// swap the current root and last term
swap(arr, i, 0);
// doing max heap again
buildHeap(arr, i, 0);
}
stopTime = System.nanoTime();
System.out.println((stopTime - startTime)*0.000000001);
}
private static void buildHeap(int arr[], int size, int i) {
int max = i;
int leftNode = 2 * i + 1;
int rightNode = 2 * i + 2;
// for max heap root must be greater than both nodes, so we compare to check this
if(leftNode<size && arr[leftNode]>arr[max]) {
// left node larger than current root
max = leftNode;
}
if(rightNode<size && arr[rightNode]>arr[max]) {
// right node larger than left node and current root
max = rightNode;
}
if (max != i) {
// root is not greatest
swap(arr, max, i);
// since this sub-heap got rearranged we need to rearrange all sub-heaps before this recursively
buildHeap(arr, size, max);
}
}
private static void swap(int arr[], int pos1, int pos2) {
int temp = arr[pos1];
arr[pos1] = arr[pos2];
arr[pos2] = temp;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// taking input array
System.out.println("Enter size of array:");
int size = sc.nextInt();
int arr[] = new int[size];
System.out.println("Enter array elements:");
for (int i = 0; i < size; i++) {
arr[i] = sc.nextInt();
}
// before sorting
System.out.println("Array before heap sort:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
long startTime = System.nanoTime();
heapSort(arr);
long stopTime = System.nanoTime();
System.out.println("Time to sort the array:");
System.out.println((stopTime - startTime)*0.000000001);
// after sorting
System.out.println("Array after heap sort:");
for (int i=0; i<arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
sc.close();
}
}
/*
Sample input/output:-
Enter size of array:
9
Enter array elements:
12
11
9
10
3
7
6
20
1
Array before heap sort:
12 11 9 10 3 7 6 20 1
Time to make first max heap:
1.0418000000000001E-5
Time to make sort using max heaps and putting largest element in the end:
7.484000000000001E-6
Time to sort the array:
0.002423689
Array after heap sort:
1 3 6 7 9 10 11 12 20
Building the max heap requires O(n) calls to the buildHeap function which
takes O(Logn) time to build the max heap
Therefore, total time complexity = O(nLogn)
In heap sort since we are only keeping data in the array and only
rearranging it so no data needs to be stored anywhere else (other than the swap step)
So, space complexity = O(1)
*/