-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathRadixSort.java
69 lines (63 loc) · 1.64 KB
/
RadixSort.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
Radix sort is based on counting sort
This sort is used for non-negative elements
Assuming the range is fixed, as int capacity
is limited in any language, this sort takes
MAX_INT contains 10 decimal values
If range is not fixed, this sort takes O(kn) time
where k is #decimal places in the number
This works because of the nature of counting sort
Counting sort is a stable sort
**/
public class RadixSort {
// required variables
private static int M = 10, K = 10;
private static void counting_sort(int[] arr, int n, int p) {
int element = (int)Math.pow(10, p), i;
int divs = element / 10;
// counting array
int[] count = new int[M];
for(i = 0; i < M; i++)
count[i] = 0;
for(i = 0; i < n; i++)
count[(arr[i] % element) / divs] ++;
for(i = 1; i < M; i++)
count[i] += count[i-1];
int[] op = new int[n];
for(i = n-1; i >= 0; i--) {
op[count[(arr[i] % element) / divs] - 1] = arr[i];
count[(arr[i] % element) / divs] --;
}
// copying the array back
for(i = 0; i < n; i++)
arr[i] = op[i];
}
private static void radix_sort(int[] arr, int n) {
// apply counting sort for all decimal places
for(int i = 1; i <= K; i++)
counting_sort(arr, n, i);
}
public static void main(String[] args) {
int n, i;
Scanner sc= new Scanner(System.in);
n = sc.nextInt();
int[] arr = new int[n];
// taking ip
for(i = 0; i < n; i++)
arr[i] = sc.nextInt();
// perform the sort
radix_sort(arr, n);
for(i = 0; i < n; i++)
System.out.print(arr[i] + " ");
System.out.println();
}
}
/**
Input :
8
175 45 75 90 802 24 2 66
Output :
2 24 45 66 75 90 175 802
Time complexity : O(n)
Space complexity : O(n)
**/