forked from RFD-FHEM/SIGNALESP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cc1101.h
476 lines (395 loc) · 15.2 KB
/
cc1101.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// cc1101.h
#ifndef _CC1101_h
#define _CC1101_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <EEPROM.h>
#include "output.h"
extern String cmdstring;
namespace cc1101 {
#ifdef ARDUINO_AVR_ICT_BOARDS_ICT_BOARDS_AVR_RADINOCC1101
#define SS 8
#define PIN_MARK433 4 // LOW -> 433Mhz | HIGH -> 868Mhz
#endif
#define csPin SS // CSN out
#define mosiPin MOSI // MOSI out
#define misoPin MISO // MISO in
#define sckPin SCK // SCLK out
#define CC1101_CONFIG 0x80
#define CC1101_STATUS 0xC0
#define CC1100_WRITE_BURST 0x40
#define CC1100_READ_BURST 0xC0
#define CC1100_FREQ2 0x0D // Frequency control word, high byte
#define CC1100_FREQ1 0x0E // Frequency control word, middle byte
#define CC1100_FREQ0 0x0F // Frequency control word, low byte
#define CC1100_PATABLE 0x3E // 8 byte memory
#define CC1100_IOCFG2 0x00 // GDO2 output configuration
#define CC1100_PKTCTRL0 0x08 // Packet config register
// Status registers
#define CC1100_RSSI 0x34 // Received signal strength indication
#define CC1100_MARCSTATE 0x35 // Control state machine state
// Strobe commands
#define CC1101_SRES 0x30 // reset
#define CC1100_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
#define CC1100_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
#define CC1100_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and MCSM0.FS_AUTOCAL=1
#define CC1100_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if MCSM0.FS_AUTOCAL=1
#define CC1100_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer
#define CC1100_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CC1100_SFTX 0x3B // Flush the TX FIFO buffer.
#define wait_Miso() while(isHigh(misoPin) ) { static uint8_t miso_count=255;delay(1); if(miso_count==0) return; miso_count--; } // wait until SPI MISO line goes low
#define cc1101_Select() digitalLow(csPin) // select (SPI) CC1101
#define cc1101_Deselect() digitalHigh(csPin)
#define EE_CC1100_CFG 2
#define EE_CC1100_CFG_SIZE 0x29
#define EE_CC1100_PA 0x30 // (EE_CC1100_CFG+EE_CC1100_CFG_SIZE) // 2B
#define EE_CC1100_PA_SIZE 8
#define PATABLE_DEFAULT 0x84 // 5 dB default value for factory reset
//------------------------------------------------------------------------------
// Chip Status Byte
//------------------------------------------------------------------------------
// Bit fields in the chip status byte
#define CC1100_STATUS_CHIP_RDYn_BM 0x80
#define CC1100_STATUS_STATE_BM 0x70
#define CC1100_STATUS_FIFO_BYTES_AVAILABLE_BM 0x0F
// Chip states
#define CC1100_STATE_IDLE 0x00
#define CC1100_STATE_RX 0x10
#define CC1100_STATE_TX 0x20
#define CC1100_STATE_FSTXON 0x30
#define CC1100_STATE_CALIBRATE 0x40
#define CC1100_STATE_SETTLING 0x50
#define CC1100_STATE_RX_OVERFLOW 0x60
#define CC1100_STATE_TX_UNDERFLOW 0x70
#ifdef ARDUINO_AVR_ICT_BOARDS_ICT_BOARDS_AVR_RADINOCC1101
uint8_t RADINOVARIANT = 0; // Standardwert welcher je radinoVarinat geändert wird
#endif
static const uint8_t initVal[] PROGMEM =
{
// IDX NAME RESET COMMENT
0x0D, // 00 IOCFG2 29 GDO2 as serial output
0x2E, // 01 IOCFG1 Tri-State
0x2D, // 02 IOCFG0 3F GDO0 for input
0x07, // 03 FIFOTHR
0xD3, // 04 SYNC1
0x91, // 05 SYNC0
0x3D, // 06 PKTLEN 0F
0x04, // 07 PKTCTRL1
0x32, // 08 PKTCTRL0 45
0x00, // 09 ADDR
0x00, // 0A CHANNR
0x06, // 0B FSCTRL1 0F 152kHz IF Frquency
0x00, // 0C FSCTRL0
0x10, // 0D FREQ2 1E Freq
0xB0, // 0E FREQ1 C4
0x71, // 0F FREQ0 EC
0x57, // 10 MDMCFG4 8C bWidth 325kHz
0xC4, // 11 MDMCFG3 22 DataRate
0x30, // 12 MDMCFG2 02 Modulation: ASK
0x23, // 13 MDMCFG1 22
0xb9, // 14 MDMCFG0 F8 ChannelSpace: 350kHz
0x00, // 15 DEVIATN 47
0x07, // 16 MCSM2 07
0x00, // 17 MCSM1 30 Bit 3:2 RXOFF_MODE: Select what should happen when a packet has been received: 0 = IDLE 3 = Stay in RX ####
0x18, // 18 MCSM0 04 Calibration: RX/TX->IDLE
0x14, // 19 FOCCFG 36
0x6C, // 1A BSCFG
0x07, // 1B AGCCTRL2 03 42 dB instead of 33dB
0x00, // 1C AGCCTRL1 40
0x90, // 1D AGCCTRL0 91 4dB decision boundery
0x87, // 1E WOREVT1
0x6B, // 1F WOREVT0
0xF8, // 20 WORCTRL
0x56, // 21 FREND1
0x11, // 22 FREND0 16 0x11 for no PA ramping
0xE9, // 23 FSCAL3 A9 E9 ??
0x2A, // 24 FSCAL2 0A
0x00, // 25 FSCAL1 20 19 ??
0x1F, // 26 FSCAL0 0D
0x41, // 27 RCCTRL1
0x00, // 28 RCCTRL0
};
byte hex2int(byte hex) { // convert a hexdigit to int // Todo: printf oder scanf nutzen
if (hex >= '0' && hex <= '9') hex = hex - '0';
else if (hex >= 'a' && hex <= 'f') hex = hex - 'a' + 10;
else if (hex >= 'A' && hex <= 'F') hex = hex - 'A' + 10;
return hex;
// printf ("%d\n",$hex) ??
}
void printHex2(const byte hex) { // Todo: printf oder scanf nutzen
if (hex < 16) {
MSG_PRINT("0");
}
// char hexstr[2] = {0};
//sprintf(hexstr, "%02X", hex);
MSG_PRINT(hex, HEX);
}
uint8_t sendSPI(const uint8_t val) { // send byte via SPI
SPDR = val; // transfer byte via SPI
while (!(SPSR & _BV(SPIF))); // wait until SPI operation is terminated
return SPDR;
}
uint8_t cmdStrobe(const uint8_t cmd) { // send command strobe to the CC1101 IC via SPI
cc1101_Select(); // select CC1101
wait_Miso(); // wait until MISO goes low
uint8_t ret = sendSPI(cmd); // send strobe command
wait_Miso(); // wait until MISO goes low
cc1101_Deselect(); // deselect CC1101
return ret; // Chip Status Byte
}
uint8_t readReg(const uint8_t regAddr, const uint8_t regType) { // read CC1101 register via SPI
cc1101_Select(); // select CC1101
wait_Miso(); // wait until MISO goes low
sendSPI(regAddr | regType); // send register address
uint8_t val = sendSPI(0x00); // read result
cc1101_Deselect(); // deselect CC1101
return val;
}
void writeReg(const uint8_t regAddr, const uint8_t val) { // write single register into the CC1101 IC via SPI
cc1101_Select(); // select CC1101
wait_Miso(); // wait until MISO goes low
sendSPI(regAddr); // send register address
sendSPI(val); // send value
cc1101_Deselect(); // deselect CC1101
}
void readPatable(void) {
uint8_t PatableArray[8];
// das PatableArray wird zum zwischenspeichern der PATABLE verwendet,
// da ich mir nicht sicher bin ob es timing maessig passt, wenn es nach jedem sendSPI(0x00) eine kurze Pause beim msgprint gibt.
cc1101_Select(); // select CC1101
wait_Miso(); // wait until MISO goes low
sendSPI(CC1100_PATABLE | CC1100_READ_BURST); // send register address
for (uint8_t i = 0; i < 8; i++) {
PatableArray[i] = sendSPI(0x00); // read result
}
cc1101_Deselect();
for (uint8_t i = 0; i < 8; i++) {
printHex2(PatableArray[i]);
MSG_PRINT(" ");
}
MSG_PRINTLN("");
}
void writePatable(void) {
cc1101_Select(); // select CC1101
wait_Miso(); // wait until MISO goes low
sendSPI(CC1100_PATABLE | CC1100_WRITE_BURST); // send register address
for (uint8_t i = 0; i < 8; i++) {
sendSPI(EEPROM.read(EE_CC1100_PA+i)); // send value
}
cc1101_Deselect();
}
void readCCreg(const uint8_t reg) { // read CC11001 register
uint8_t var;
uint8_t hex;
uint8_t n;
if (cmdstring.charAt(3) == 'n' && isHexadecimalDigit(cmdstring.charAt(4))) { // C<reg>n<anz> gibt anz+2 fortlaufende register zurueck
hex = (uint8_t)cmdstring.charAt(4);
n = hex2int(hex);
if (reg < 0x2F) {
MSG_PRINT("C");
printHex2(reg);
MSG_PRINT("n");
n += 2;
printHex2(n);
MSG_PRINT("=");
for (uint8_t i = 0; i < n; i++) {
var = readReg(reg + i, CC1101_CONFIG);
printHex2(var);
}
MSG_PRINTLN("");
}
}
else {
if (reg < 0x3E) {
if (reg < 0x2F) {
var = readReg(reg, CC1101_CONFIG);
}
else {
var = readReg(reg, CC1101_STATUS);
}
MSG_PRINT("C");
printHex2(reg);
MSG_PRINT(" = ");
printHex2(var);
MSG_PRINTLN("");
}
else if (reg == 0x3E) { // patable
MSG_PRINT(F("C3E = "));
readPatable();
}
else if (reg == 0x99) { // alle register
for (uint8_t i = 0; i < 0x2f; i++) {
if (i == 0 || i == 0x10 || i == 0x20) {
if (i > 0) {
MSG_PRINT(" ");
}
MSG_PRINT(F("ccreg "));
printHex2(i);
MSG_PRINT(F(": "));
}
var = readReg(i, CC1101_CONFIG);
printHex2(var);
MSG_PRINT(" ");
}
MSG_PRINTLN("");
}
}
}
void commandStrobes(void) {
uint8_t hex;
uint8_t reg;
uint8_t val;
uint8_t val1;
if (isHexadecimalDigit(cmdstring.charAt(3))) {
hex = (uint8_t)cmdstring.charAt(3);
reg = hex2int(hex) + 0x30;
if (reg < 0x3e) {
val = cmdStrobe(reg);
delay(1);
val1 = cmdStrobe(0x3D); // No operation. May be used to get access to the chip status byte.
MSG_PRINT(F("cmdStrobeReg "));
printHex2(reg);
MSG_PRINT(F(" chipStatus "));
val = val >> 4;
MSG_PRINT(val, HEX);
MSG_PRINT(F(" delay1 "));
val = val1 >> 4;
MSG_PRINT(val, HEX);
MSG_PRINTLN("");
}
}
}
void writeCCreg(uint8_t reg, uint8_t var) { // write CC11001 register
if (reg > 1 && reg < 0x40) {
writeReg(reg-2, var);
MSG_PRINT("W");
printHex2(reg);
printHex2(var);
MSG_PRINTLN("");
}
}
void writeCCpatable(uint8_t var) { // write 8 byte to patable (kein pa ramping)
for (uint8_t i = 0; i < 8; i++) {
if (i == 1) {
EEPROM.write(EE_CC1100_PA + i, var);
} else {
EEPROM.write(EE_CC1100_PA + i, 0);
}
}
writePatable();
}
void ccFactoryReset() {
for (uint8_t i = 0; i<sizeof(initVal); i++) {
EEPROM.write(EE_CC1100_CFG + i, pgm_read_byte(&initVal[i]));
}
for (uint8_t i = 0; i < 8; i++) {
if (i == 1) {
EEPROM.write(EE_CC1100_PA + i, PATABLE_DEFAULT);
} else {
EEPROM.write(EE_CC1100_PA + i, 0);
}
}
MSG_PRINTLN("ccFactoryReset done");
}
bool checkCC1101() {
uint8_t partnum = readReg(0xF0,0x80); // Partnum
uint8_t version = readReg(0xF1,0x80); // Version
DBG_PRINT("CCVersion="); DBG_PRINTLN(version);
DBG_PRINT("CCPartnum="); DBG_PRINTLN(partnum);
//checks if valid Chip ID is found. Usualy 0x03 or 0x14. if not -> abort
if (version == 0x00 || version == 0xFF)
{
DBG_PRINTLN(F("no CC11xx found!"));
DBG_PRINTLN();
return false; // Todo: power down SPI etc
}
return true;
}
inline void setup()
{
pinAsOutput(sckPin);
pinAsOutput(mosiPin);
pinAsInput(misoPin);
pinAsOutput(csPin); // set pins for SPI communication
#ifdef ARDUINO_AVR_ICT_BOARDS_ICT_BOARDS_AVR_RADINOCC1101
pinAsInputPullUp(PIN_MARK433);
#endif
//// Änderungsbeginn --->
SPCR = _BV(SPE) | _BV(MSTR); // SPI speed = CLK/4
/*
SPCR = ((1 << SPE) | // SPI Enable
(0 << SPIE) | // SPI Interupt Enable
(0 << DORD) | // Data Order (0:MSB first / 1:LSB first)
(1 << MSTR) | // Master/Slave select
(0 << SPR1) | (0 << SPR0) | // SPI Clock Rate
(0 << CPOL) | // Clock Polarity (0:SCK low / 1:SCK hi when idle)
(0 << CPHA)); // Clock Phase (0:leading / 1:trailing edge sampling)
SPSR = (1 << SPI2X); // Double Clock Rate
*/
pinAsInput(PIN_SEND); // gdo0Pi, sicherheitshalber bis zum CC1101 init erstmal input
digitalHigh(csPin); // SPI init
digitalHigh(sckPin);
digitalLow(mosiPin);
}
uint8_t getRSSI()
{
return readReg(CC1100_RSSI, CC1101_STATUS);// Pruefen ob Umwandung von uint to int den richtigen Wert zurueck gibt
}
inline void setIdleMode()
{
cmdStrobe(CC1100_SIDLE); // Idle mode
delay(1);
}
void setReceiveMode()
{
setIdleMode();
uint8_t maxloop = 0xff;
while (maxloop-- && (cmdStrobe(CC1100_SRX) & CC1100_STATUS_STATE_BM) != CC1100_STATE_RX) // RX enable
delay(1);
if (maxloop == 0 ) DBG_PRINTLN("CC1101: Setting RX failed");
}
void setTransmitMode()
{
cmdStrobe(CC1100_SFTX); // wird dies benoetigt? Wir verwenden kein FIFO
setIdleMode();
uint8_t maxloop = 0xff;
while (maxloop-- && (cmdStrobe(CC1100_STX) & CC1100_STATUS_STATE_BM) != CC1100_STATE_TX) // TX enable
delay(1);
if (maxloop == 0) DBG_PRINTLN("CC1101: Setting TX failed");
}
void CCinit(void) { // initialize CC1101
cc1101_Deselect(); // some deselect and selects to init the cc1101
delayMicroseconds(30);
// Begin of power on reset
cc1101_Select();
delayMicroseconds(30);
cc1101_Deselect();
delayMicroseconds(45);
DBG_PRINTLN("SRES Started");
cmdStrobe(CC1101_SRES); // send reset
DBG_PRINTLN("POR Done");
delay(10);
cc1101_Select();
sendSPI(CC1100_WRITE_BURST);
for (uint8_t i = 0; i<sizeof(initVal); i++) { // write EEPROM value to cc11001
sendSPI(EEPROM.read(EE_CC1100_CFG + i));
}
cc1101_Deselect();
delayMicroseconds(10); // ### todo: welcher Wert ist als delay sinnvoll? ###
writePatable(); // write PatableArray to patable reg
delay(1);
setReceiveMode();
}
bool regCheck()
{
DBG_PRINT("CC1100_PKTCTRL0="); DBG_PRINT(readReg(CC1100_PKTCTRL0, CC1101_CONFIG));
DBG_PRINT(" vs EEPROM PKTCTRL0="); DBG_PRINTLN(initVal[CC1100_PKTCTRL0]);
DBG_PRINT("C1100_IOCFG2="); DBG_PRINT(readReg(CC1100_IOCFG2, CC1101_CONFIG));
DBG_PRINT(" vs EEPROM IOCFG2="); DBG_PRINTLN(initVal[CC1100_IOCFG2]);
return (readReg(CC1100_PKTCTRL0, CC1101_CONFIG) == initVal[CC1100_PKTCTRL0]) && (readReg(CC1100_IOCFG2, CC1101_CONFIG) == initVal[CC1100_IOCFG2]);
}
}
#endif