-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection.m
94 lines (85 loc) · 2.92 KB
/
detection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
clc
clear
close all
run('D:/Softwares/vlfeat-0.9.20/toolbox/vl_setup');
files = dir('D:\Mandeep\Summer\BTP\Tracking\negatives_training_data\*.jpg');
count = length(files);
files2 = dir('D:\Mandeep\Summer\BTP\Tracking\HOG\negatives_training_data\*.jpg');
count2 = length(files2);
load('weights.mat');
load('offsets.mat');
load('vocabulary.mat');
filename = '77.jpg';%1 | 2 | 352| 447 |654 | 77 |
img = imread(filename);
original = img;
%imshow(img);
%i - traversing left to right || j - traversing top to bottom || i_n -
%image number
i = 1; j = 1;
% while( (i <= max_y - s_w) && (j <= max_x - s_h))
i_n = 1;
bbox ={};
scores = [];
images_tried = 0;
for scale = 1:-0.1:0.6
img = imresize(original,scale);
%max_y - width of image || max_X - height of image
max_y = size(img,2); max_x = size(img,1);
%s_h - scale_height || s_w - scale_width
s_h = 20;s_w = 45;
for i = max_x/2:10:(max_x/2 + max_x/4)
for j = 1:10:max_y - s_w
%c_i - cropped_image
crop = [j,i,s_w,s_h] ;
c_i = imcrop(img, crop);
%c_i = imread('D:\Mandeep\Summer\BTP\Tracking\Hog\test_data3\1762.jpg');
features = extract_features(c_i,vocabulary);
[plane,score] = classify(features,weights,offsets);
if(plane)
i_n
scores = [scores;score];
crop = [(crop(1)/scale), (crop(2)/scale), (crop(3)/scale),(crop(4)/scale)];
bbox{i_n,1} = crop;
i_n = i_n + 1;
count2 = count2 + 1;
filename = strcat('D:\Mandeep\Summer\BTP\Tracking\Hog\negatives_training_data\',num2str(count2),'.jpg');
imwrite(c_i,filename);
end
plane = 0;
images_tried = images_tried + 1;
end
end
images_tried
images_tried = 0;
end
bbox = cell2mat(bbox);
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,scores,'RatioType','Min','OverlapThreshold',0.2);
img = original;
for i = 1:size(selectedBbox,1)
img = insertShape(img,'rectangle',selectedBbox(i,:),'LineWidth',1);
end
imshow(img);
function [features] = extract_features(img,vocabulary)
img = im2single(rgb2gray(img));
vocab_size = size(vocabulary, 1);
[~, features] = vl_dsift(img, 'Fast', 'Step', 4);
features = single(features);
[indices] = knnsearch(vocabulary, features');
imhist=histc(indices, 1:vocab_size);
imhist_norm=imhist./numel(imhist);
features = imhist_norm';
end
function [plane,score] = classify(features,weights,offsets)
training_score = [];
for i = 1:2
training_score = [training_score; weights{i}'*features' + offsets{i}];
end
[~,label_indices] = max(training_score);
if (label_indices == 2)
score = training_score(label_indices);
plane = 1;
else
plane = 0;
score = 0;
end
end