Skip to content

This repositiory contains jupyter notebooks for CNN Assisted PSF Localization (CAPL) scheme for localization microscopy

License

Notifications You must be signed in to change notification settings

Holgraphy-and-Imaging-Lab-IIT-Guwahati/CAPL

Repository files navigation

CAPL

This is the Git repository for the program 'CNN assisted PSF localization (CAPL)' based on the paper Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy.

Setting up

The program was developed in Python 3.8.8. Later versions of Python should be supported but have not been tested yet. If you are on a later version, give it a try!

I would suggest you use Anaconda / Miniconda and set up a virtual environment as:

  • conda create -n "myenv" python=3.8.8 # replace "myenv" with your desired name.

After setting up the virtual environment, you can install the dependencies as:

  • pip install -r requirements.txt

  • Additionally you will need to set up Fiji / ImageJ and install the ThunderSTORM plugin.

Usage

The program is divided into four parts:

  1. 01_training_data_generation.ipynb : this notebook generates the training files required to train the model.
  2. 02_training_model.ipynb : this notebook trains the CNN model
  3. 03_prediction.ipynb : this notebook is used to employ the trained model to predict super-resolved images from unseen data
  4. ImageVisualization.py : this script is reused from one of my old projects; used to create the super-resolved image from the detections

A step-by-step procedure for using each notebook is incorporated into the notebooks.

This code is prepared based on Deep-STORM and ZeroCostDL4Mic platform. Please also cite their work.

Thank you,

Pranjal Choudhury

About

This repositiory contains jupyter notebooks for CNN Assisted PSF Localization (CAPL) scheme for localization microscopy

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published