-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_plots.sh
executable file
·67 lines (53 loc) · 2.12 KB
/
generate_plots.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/bin/bash
# BASIC Implementation
python helper_scripts/plot_performance_alt.py --system intel \
--data-path measurements/martin/20210528_012132 \
--files basic.csv \
basic_distvec.csv \
basic_distvec_quickvec.csv \
basic_distvec_quickvec_primvec.csv \
--save-path plots/presentation/basic_implementation_cycles.png \
--metric=cycles \
--x-scale=linear
python helper_scripts/plot_performance_alt.py --system intel \
--data-path measurements/martin/20210528_012132 \
--files basic.csv \
basic_distvec.csv \
basic_distvec_quickvec.csv \
basic_distvec_quickvec_primvec.csv \
--save-path plots/presentation/basic_implementation_perf.png \
--metric=fp/c \
--x-scale=linear
# Advanced Implementation
python helper_scripts/plot_performance_alt.py --system intel \
--data-path measurements/martin/20210528_012132 \
--files advprim_distvec_quickvec_primvec.csv \
advprim_distvec_quickvec.csv \
advprim_distvec.csv \
advprim.csv \
--save-path plots/presentation/advanced_perf.png \
--metric=fp/c \
--x-scale=linear
python helper_scripts/plot_performance_alt.py --system intel \
--data-path measurements/martin/20210528_012132 \
--files advprim_distvec_quickvec_primvec.csv \
advprim_distvec_quickvec.csv \
advprim_distvec.csv \
advprim.csv \
--save-path plots/presentation/advanced_cycles.png \
--metric=cycles \
--x-scale=linear
# Intel v AMD
#TODO
# Distance Matrix Variations
# TODO Run on martins system
python helper_scripts/plot_performance_alt.py --system intel \
--data-path measurements/tom/20210603_141601 \
--files distance_matrix_basic.csv \
distance_matrix_blocked80.csv \
distance_matrix_triangular.csv \
--save-path plots/presentation/distance_matrix_cycles.png \
--metric=cycles \
--x-scale=linear
# Dimension Analysis
#TODO