Authors: Gavin Zhang, Hong-Ming Chiu, Richard Y. Zhang
@article{zhang2022accelerating,
title={Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion},
author={Zhang, Gavin and Chiu, Hong-Ming and Zhang, Richard Y},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2022}
}
This MATLAB program contains the implementation of scaled stochastic gradient descent (ScaledSGD) algorithm proposed in our paper "Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion". This program also consists of the source code for all 9 experiments (Figure 1 ~ Figure 9) in the paper.
ScaledSGD/ ├─ Data/ ................... Store data for experiments. ├─ Functions/ .............. Functions for data generation and plots. ├─ Exp1_RMSE.m ............. Run experiment in Figure 1. ├─ Exp2_EDM.m .............. Run experiment in Figure 2. ├─ Exp3_CF_Huge.m .......... Run experiment in Figure 3. ├─ Exp4_1bit.m ............. Run experiment in Figure 4. ├─ Exp5_RMSE_Noise.m ....... Run experiment in Figure 5. ├─ Exp6_1bit_Noise.m ....... Run experiment in Figure 6. ├─ Exp7_CF_Small.m ......... Run experiment in Figure 7. ├─ Exp8_CF_Medium.m ........ Run experiment in Figure 8. ├─ Exp9_CF_Large.m ......... Run experiment in Figure 9. ├─ Generate_Data.m ......... Generate data for Exp1 ~ Exp9. ├─ Plot_Figures.m .......... Plot all Figures 1 ~ Figure 9 in paper. ├─ scaledsgd.m ............. ScaledSGD algorithm. ├─ bpr_scaledsgd.m ......... ScaledSGD algorithm optimized for BPR loss. └─ bpr_npmaximum.m ......... Compute NP-Maximum in the paper.
- MATLAB (version R2019a or later) or GNU Octave 7.2.0.
Name : Hong-Ming Chiu
Email : hmchiu2 [at] illinois.edu
Website : https://hong-ming.github.io
MIT License