-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhash_test.cpp
240 lines (227 loc) · 6.36 KB
/
hash_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//----------------------------- hash_test.cpp ----------------------------------
//
// This software is in the public domain. The only restriction on its use is
// that no one can remove it from the public domain by claiming ownership of it,
// including the original authors.
//
// There is no warranty of correctness on the software contained herein. Use
// at your own risk.
//
//------------------------------------------------------------------------------
#include "hash_test.h"
#include <vector>
#include <climits>
#include <iostream>
#include <iomanip>
#include <set>
#include <cmath>
#include <cassert>
template <class T>
inline
T
sqr(T t)
{
return t*t;
}
// what fraction can be hashed without collision?
float
test2 (std::vector<std::size_t> const& hashes)
{
std::set<std::size_t> s(hashes.begin(), hashes.end());
return 1 - static_cast<float>(s.size()) / hashes.size();
}
float
test1(std::vector<std::size_t> const& hashes)
{
const unsigned nbits = CHAR_BIT * sizeof(std::size_t);
const unsigned rows = nbits / 4;
unsigned counts[rows][16] = {0};
for (auto h : hashes)
{
std::size_t mask = 0xF;
for (unsigned i = 0; i < rows; ++i, mask <<= 4)
counts[i][(h & mask) >> 4*i] += 1;
}
float mean_rows[rows] = {0};
float mean_cols[16] = {0};
for (unsigned i = 0; i < rows; ++i)
{
for (unsigned j = 0; j < 16; ++j)
{
mean_rows[i] += counts[i][j];
mean_cols[j] += counts[i][j];
}
}
for (unsigned i = 0; i < rows; ++i)
mean_rows[i] /= 16;
for (unsigned j = 0; j < 16; ++j)
mean_cols[j] /= rows;
// for (unsigned i = 0; i < rows; ++i)
// {
// for (unsigned j = 0; j < 16; ++j)
// std::cout << counts[i][j] << ' ';
// std::cout << '\n';
// }
// std::cout << '\n';
// for (unsigned i = 0; i < rows; ++i)
// std::cout << mean_rows[i] << ' ';
// std::cout << '\n';
// for (unsigned j = 0; j < 16; ++j)
// std::cout << mean_cols[j] << ' ';
// std::cout << '\n';
std::pair<float, float> dev[rows][16];
// std::cout << std::fixed;
// std::cout << std::setprecision(2);
for (unsigned i = 0; i < rows; ++i)
{
for (unsigned j = 0; j < 16; ++j)
{
dev[i][j].first = std::abs(counts[i][j] - mean_rows[i]) / mean_rows[i];
dev[i][j].second = std::abs(counts[i][j] - mean_cols[j]) / mean_cols[j];
}
}
float max_err = 0;
for (unsigned i = 0; i < rows; ++i)
{
for (unsigned j = 0; j < 16; ++j)
{
// std::cout << '{' << dev[i][j].first << ", " << dev[i][j].second << "} ";
if (max_err < dev[i][j].first)
max_err = dev[i][j].first;
if (max_err < dev[i][j].second)
max_err = dev[i][j].second;
}
// std::cout << '\n';
}
// std::cout << max_err << '\n';
return max_err;
}
template <class T>
std::uint32_t
window (T* blob, int start, int count )
{
std::size_t const len = sizeof(T);
static_assert((len & 3) == 0, "");
if(count == 0)
return 0;
int const nbits = len * CHAR_BIT;
start %= nbits;
int ndwords = len / 4;
std::uint32_t const* k = static_cast<std::uint32_t const*>(static_cast<void const*>(blob));
int c = start & (32-1);
int d = start / 32;
if(c == 0)
return (k[d] & ((1 << count) - 1));
int ia = (d + 1) % ndwords;
int ib = (d + 0) % ndwords;
std::uint32_t a = k[ia];
std::uint32_t b = k[ib];
std::uint32_t t = (a << (32-c)) | (b >> c);
t &= ((1 << count)-1);
return t;
}
double
calcScore (const int* bins, const std::size_t bincount, const double k)
{
double const n = bincount;
// compute rms^2 value
double rms_sq = 0;
for(std::size_t i = 0; i < bincount; ++i)
rms_sq += sqr(bins[i]);;
rms_sq /= n;
// compute fill factor
double const f = (sqr(k) - 1) / (n*rms_sq - k);
// rescale to (0,1) with 0 = good, 1 = bad
return 1 - (f / n);
}
namespace detail
{
inline
char
score2ascii (double n)
{
char c = static_cast<char>(n);
if (c == 0)
c = '.';
else if (c > 9)
c = 'X';
else
c += '0';
return c;
}
inline
double
clip (double n, double min, double max)
{
if (n < min)
return min;
if (n > max)
return max;
return n;
}
} // detail
float
test3 (std::vector<std::size_t> const& hashes)
{
int maxwidth = 20;
// We need at least 5 keys per bin to reliably test distribution biases
// down to 1%, so don't bother to test sparser distributions than that
while (static_cast<double>(hashes.size()) / (1 << maxwidth) < 5.0)
maxwidth--;
double worst = 0;
int worstStart = -1;
int worstWidth = -1;
std::vector<int> bins (1 << maxwidth);
int const hashbits = sizeof(std::size_t) * CHAR_BIT;
for (int start = 0; start < hashbits; ++start)
{
int width = maxwidth;
bins.assign (1 << width, 0);
for (std::size_t j = 0; j < hashes.size(); ++j)
++bins[window(&hashes[j], start, width)];
// Test the distribution, then fold the bins in half,
// repeat until we're down to 256 bins
while (bins.size() >= 256)
{
double score = calcScore(bins.data(), bins.size(), hashes.size());
if (score > worst)
{
worst = score;
worstStart = start;
worstWidth = width;
}
if (--width < 8)
break;
for (std::size_t i = 0, j = bins.size() / 2; j < bins.size(); ++i, ++j)
bins[i] += bins[j];
bins.resize(bins.size() / 2);
}
}
return worst;
}
float
test4(std::vector<std::size_t> const& hashes, double lf)
{
assert(lf > 0);
std::vector<std::size_t> b(static_cast<std::size_t>(hashes.size() / lf), 0);
for (auto x : hashes)
b[x % b.size()]++;
double c = 0;
for (auto x : b)
c += x*(x+1)/2.;
if (hashes.size() != 0)
c /= hashes.size();
return c / (lf/2 + 1) - 1;
}
float
test5(std::vector<std::size_t> const& hashes, double lf)
{
assert(lf > 0);
std::vector<std::size_t> b(static_cast<std::size_t>(hashes.size() / lf), 0);
for (auto x : hashes)
b[x % b.size()]++;
std::size_t m = 0;
for (auto x : b)
m = std::max(m, x);
return m;
}